高斯混合模型(GMM)原理与代码实战案例讲解
1. 背景介绍
在机器学习领域,高斯混合模型(Gaussian Mixture Model,简称GMM)是一种常用的聚类算法,它假设数据集是由若干个高斯分布混合而成。与K-means等硬聚类算法不同,GMM属于软聚类算法,为每个数据点提供了属于各个聚类的概率,这种概率的表示方式使得GMM在处理模糊或重叠数据时更为有效。
2. 核心概念与联系
GMM的核心在于利用概率模型来描述数据的生成过程。每个高斯分布代表一个聚类,其参数由均值(mean)和协方差(covariance)决定。数据点的生成可以看作是先从混合模型中随机选择一个高斯分布,然后从这个分布中随机抽取一个点。
2.1 高斯分布(Gaussian Distribution)
高斯分布,也称正态分布,是一种在自然界和社会现象中普遍存在的概率分布,其概率密度函数为: $$ f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} $$ 其中,$\mu$ 是均值,$\sigma^2$ 是方差。
2.2 混合模型(Mixture Model)
混合模型是指由多个概率分布组合而成的模型,每个分布称为一个组分(component),在GMM中,这些组分都是高斯分布。