图神经网络(Graph Neural Networks) - 原理与代码实例讲解
1.背景介绍
在现代数据科学和机器学习领域,图数据结构的应用越来越广泛。图神经网络(Graph Neural Networks, GNNs)作为一种新兴的深度学习模型,能够有效地处理和分析图结构数据。图数据在社交网络、生物信息学、推荐系统等领域有着广泛的应用。传统的神经网络在处理图数据时存在局限性,而GNNs通过引入图结构信息,能够更好地捕捉节点之间的关系和图的全局特性。
2.核心概念与联系
2.1 图的基本概念
在深入了解GNNs之前,我们需要先掌握一些图的基本概念:
- 节点(Node):图中的基本单位,表示实体。
- 边(Edge):连接两个节点的线,表示节点之间的关系。
- 邻居(Neighbor):与某个节点直接相连的节点。
- 度(Degree):与某个节点相连的边的数量。