流形学习 (Manifold Learning) 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:流形学习, 数据降维, 非线性数据表示, 自然语言处理, 图像分类
1. 背景介绍
1.1 问题的由来
在高维空间中,数据往往存在某种内在结构或低维特性,如一个球面、螺旋线或者其它几何形状。然而,传统的数据分析方法往往假设数据分布在多个独立的高维空间中,这忽视了数据可能具有内在的低维结构这一事实。流形学习旨在揭示这种低维结构,并将其用于数据降维、可视化以及各种机器学习任务中。
1.2 研究现状
近年来,随着神经网络的发展和对深度学习理论的深入理解,流形学习成为了机器学习研究的一个热点方向。研究者们开发出了多种有效的流形学习算法,如局部线性嵌入(Locally Linear Embedding, LLE)、ISOMAP、Laplacian Eigenmaps等,这些方法能够捕捉到数据集内部的复杂拓扑关系,并将原始高维数据映射到低维空间中,同时保持数据之间的相对距离。
1.3 研究意义
流形学习对于解决实际世界中许多数据驱动的问题至关重要。