大语言模型应用指南:越狱攻击与数据投毒

大语言模型应用指南:越狱攻击与数据投毒

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词:大语言模型、安全威胁、攻击方法、数据污染、防御策略

1. 背景介绍

1.1 问题的由来

随着大规模语言模型(Large Language Models, LLMs)的兴起,它们在自然语言处理任务上的卓越表现引起了广泛关注。然而,这些强大而灵活的模型也面临着一系列安全威胁,其中“越狱攻击”与“数据投毒”是两种常见的恶意利用手段。这两种攻击方式分别针对模型的预测能力和数据输入的可信度进行操纵,对依赖于LLMs的应用系统构成了严重风险。

1.2 研究现状

近年来,学术界和工业界已开始关注并研究这些安全威胁及其防御机制。研究人员提出了一系列技术解决方案,旨在增强LLMs的安全性和可靠性,同时开发检测和抵御上述攻击的有效策略。

1.3 研究意义

深入理解并有效应对“越狱攻击”与“数据投毒”的挑战对于保护基于LLMs的系统至关重要。这不仅有助于维护系统的正确性与稳定性,还能确保用户隐私和数据安全不被侵犯。通过提升安全性,可以促进更广泛地应用LLMs,推动人工智能技术的发展和社会价值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值