大语言模型应用指南:越狱攻击与数据投毒
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:大语言模型、安全威胁、攻击方法、数据污染、防御策略
1. 背景介绍
1.1 问题的由来
随着大规模语言模型(Large Language Models, LLMs)的兴起,它们在自然语言处理任务上的卓越表现引起了广泛关注。然而,这些强大而灵活的模型也面临着一系列安全威胁,其中“越狱攻击”与“数据投毒”是两种常见的恶意利用手段。这两种攻击方式分别针对模型的预测能力和数据输入的可信度进行操纵,对依赖于LLMs的应用系统构成了严重风险。
1.2 研究现状
近年来,学术界和工业界已开始关注并研究这些安全威胁及其防御机制。研究人员提出了一系列技术解决方案,旨在增强LLMs的安全性和可靠性,同时开发检测和抵御上述攻击的有效策略。
1.3 研究意义
深入理解并有效应对“越狱攻击”与“数据投毒”的挑战对于保护基于LLMs的系统至关重要。这不仅有助于维护系统的正确性与稳定性,还能确保用户隐私和数据安全不被侵犯。通过提升安全性,可以促进更广泛地应用LLMs,推动人工智能技术的发展和社会价值。