从零开始大模型开发与微调:文本主题的提取:基于TF-IDF
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:
- TF-IDF
- 文本主题提取
- 文本分析
- 自然语言处理(NLP)
- 大模型开发
- 微调策略
1. 背景介绍
1.1 问题的由来
在海量文本数据的处理和分析中,自动提取文本的主题或关键词对于信息检索、内容推荐、文本分类以及语义理解等领域具有重要意义。TF-IDF(Term Frequency-Inverse Document Frequency)是一种常用的技术,用于衡量一个词语在一个文档集合中的重要性。它通过计算词语的出现频率(TF)以及该词语在整个文档集合中的稀有性(IDF)来评估词语的重要性。
1.2 研究现状
目前,基于TF-IDF的方法已被广泛应用于文本挖掘和信息检索领域,特别是在文档聚类、主题建模和语义搜索中。然而,随着大规模语言模型的兴起,如BERT、GPT等预训练模型,人们开始探索如何将这些大模型