生成对抗网络GAN原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:生成对抗网络(GAN), 原理, 代码实例, TensorFlow, PyTorch
1. 背景介绍
1.1 问题的由来
在机器学习和数据科学领域,生成模型一直是研究热点之一。传统的生成模型如线性回归、朴素贝叶斯等方法通常基于概率分布建模或参数估计,但它们往往难以捕捉复杂的高维数据分布特征。随着深度学习的兴起,特别是卷积神经网络(CNNs)的成功应用,人们开始探索如何利用深层神经网络进行非参数化生成模型的设计。
1.2 研究现状
近年来,生成对抗网络(Generative Adversarial Networks, GAN)作为一类新兴的无监督学习方法,因其独特的生成能力而备受关注。它通过引入两个竞争性的神经网络——生成器(Generator)和判别器(Discriminator)——实现了自动学习数据分布并生成新样本的目标。这一创新极大地拓展了生成模型的应用范围,并在图像生成、文本生成、视频生成等多个领域展现出强大的潜力。
1.3 研究意义
生成对抗网络的研究不仅推动了机器学习理论的发展&#x