层次聚类与流形学习的结合
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming / TextGenWebUILLM
层次聚类与流形学习的结合
1. 背景介绍
1.1 问题的由来
在机器学习与数据挖掘领域,面对高维复杂的数据集时,如何有效地揭示其内在结构并进行模式识别成为了一个重要课题。传统的聚类方法如K-means或层次聚类,虽然在某些场景下表现出良好的效果,但在处理非线性分布的数据时存在局限性。同时,流形学习作为一种新兴的技术,在捕捉数据的潜在低维结构方面展现出强大的能力,但单独应用于聚类任务时往往缺乏全局视图的考虑。因此,探索层次聚类与流形学习相结合的方法,旨在融合两者的优势,提高复杂数据集聚类分析的效率与准确性。
1.2 研究现状
近年来,随着深度学习的发展以及对非欧几里得空间数据理解需求的增长,流形学习与聚类算法之间的整合受到了广泛研究。一些集成方法尝试通过先利用流形学习技术降低数据维度,再进行聚类分析,以期望获得更精确的类别划分。然而,现有方法在如何有效结合流形学习的局部几何信息与层次聚类的全局组织性之间仍存在优化空间。
1.3 研究意义
结合层次聚类与流形学习不仅能够提升复杂数据集的聚类性能,还能促进对数据内在结构的理解。这种结合有助于解决以下关键问题:
- 提升非线性数据的聚类准确率。
- 加强聚类结果的可解释性