支持向量机SVM原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:支持向量机(SVM)、线性可分、非线性分类、核函数、最大间隔、软间隔、交叉验证、多类分类、回归任务
1. 背景介绍
1.1 问题的由来
在机器学习领域,分类任务是常见的问题之一,其中支持向量机(SVM)因其在高维空间上的优秀分类性能而受到广泛关注。SVM的目标是在特征空间中找到一个超平面,该超平面能最大程度地分割不同类别的样本,同时确保不同类别样本之间的边界尽可能宽。
1.2 研究现状
SVM技术已经发展成为众多机器学习算法中的佼佼者,特别是在文本分类、生物信息学、图像识别等领域展现出了卓越的性能。近年来,随着深度学习的兴起,SVM的研究也不断深入,探索如何结合SVM与深度学习模型,以提高模型的复杂性和适应性。
1.3 研究意义
SVM的研究具有重要的理论和实践意义。理论层面,它深化了对高维空间中数据结构的理解,为非线性分类问题提供了有效的解决方案。实践层面,SVM在诸如垃圾邮件过滤、文本情感分析、基因表达数据分析等领域发挥了重要作用,展示了其