随机梯度下降 (Stochastic Gradient Descent)
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
在人工智能和机器学习领域,优化问题是核心问题之一。优化问题的目标是找到一组参数值,使得目标函数达到最小值或最大值。在深度学习中,模型的训练过程本质上就是一个优化问题,即找到模型参数的最优值,使得模型在训练数据上的预测误差最小。
随着神经网络模型的复杂性不断增加,传统的优化算法(如梯度下降法)在处理大规模数据集时效率低下,甚至可能陷入局部最优解。为了解决这个问题,随机梯度下降(Stochastic Gradient Descent,SGD)应运而生。
1.2 研究现状
SGD是一种在机器学习中常用的优化算法,尤其是在深度学习领域。近年来,随着神经网络模型的发展,SGD也在不断演进,出现了多种改进算法,如Adam、RMSprop、Adamax等。
1.3 研究意义
SGD因其简单、高效和易于实现等优点,在机器学习和深度学习中具有重要的研