随机梯度下降 (Stochastic Gradient Descent)

随机梯度下降 (Stochastic Gradient Descent)

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

在人工智能和机器学习领域,优化问题是核心问题之一。优化问题的目标是找到一组参数值,使得目标函数达到最小值或最大值。在深度学习中,模型的训练过程本质上就是一个优化问题,即找到模型参数的最优值,使得模型在训练数据上的预测误差最小。

随着神经网络模型的复杂性不断增加,传统的优化算法(如梯度下降法)在处理大规模数据集时效率低下,甚至可能陷入局部最优解。为了解决这个问题,随机梯度下降(Stochastic Gradient Descent,SGD)应运而生。

1.2 研究现状

SGD是一种在机器学习中常用的优化算法,尤其是在深度学习领域。近年来,随着神经网络模型的发展,SGD也在不断演进,出现了多种改进算法,如Adam、RMSprop、Adamax等。

1.3 研究意义

SGD因其简单、高效和易于实现等优点,在机器学习和深度学习中具有重要的研

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值