LLM 在推荐系统领域的应用

目录

01 前言

02 现状

2.1 推荐系统

2.2 大模型

2.2.1 涌现

2.2.2 上下文学习&COT能力

03 LLM4Rec

3.1 为什么要用LLM

1)LLM Embeddings + RS

2)LLM Tokens + RS

3)LLM AS RS

3.2 Pretraining-FLM

3.3 Fine-Tuning-FLM

3.4 Prompt-Tuning

3.5 Survey

3.6 LLM-Based 长文档推荐

04 总结&展望

参考阅读:


01 前言

最近大模型真的很火,从个人到公司,各行各业都在学习大模型、总结大模型和尝试应用大模型。大模型其实不是一个新的产物,已经在NLP发展了很多年。ChatGPT的诞生,经验的效果震惊了所有人,虽然也有一些瑕疵,但是瑕不掩瑜。微软投资OpenAI看到了它的未来。

微软快速围绕ChatGPT对相关的产品进行了产品升级,从搜索到微软365各种产品。一个大象级别的公司,竟然在AI面前这么灵活,而且有决心、有魄力对全部产品进行改造,ALL IN AI 。微软的几个点给我印象深刻:

  • 50%左右的人没有用过AIGC;

  • 80%的人只用过简单的提示词,把AI作为知识库;

  • 90%的人过度理解AI,AI可以解决一切。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值