fewshot原理与代码实战案例讲解

few-shot原理与代码实战案例讲解

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

在深度学习领域,传统的机器学习模型往往需要大量的标注数据来进行训练,这对于很多领域来说都是一个巨大的挑战。特别是当数据收集成本高、数据量有限的情况下,如何利用少量数据进行高精度学习成为了一个关键问题。

few-shot learning,即少样本学习,应运而生。它通过利用少量样本和强大的模型学习能力,在有限的样本数量下实现高精度预测。few-shot learning在计算机视觉、自然语言处理等领域都得到了广泛的研究和应用。

1.2 研究现状

近年来,few-shot learning取得了显著的进展。随着深度学习模型的发展,few-shot learning方法也在不断优化和改进。以下是一些典型的few-shot learning方法:

  1. 基于原型匹配的方法:通过计算样本之间的距离,将新样本与最近的样本进行分类。
  2. 基于元学习的方法:利用模型在多个任务上的学习经验,提高模型在少量样本上的泛化能力。
  3. 基于迁移学习的方法:将预训练模型迁移到少量样本学习任务上,利用预训练模型的知识和参数来辅助学习。

1.3 研究

### Few-Shot Learning Code Examples Few-shot learning aims to develop models that can generalize well from a limited amount of data. Below are Python code snippets demonstrating how one might implement few-shot learning techniques such as Prototypical Networks. #### Example 1: Prototypical Network Implementation Prototypical networks learn by computing distances between embeddings of support samples and query samples within each episode[^3]. ```python import torch from torch import nn import numpy as np class ProtoNet(nn.Module): def __init__(self, encoder): super(ProtoNet, self).__init__() self.encoder = encoder def forward(self, support_x, support_y, query_x): """ Args: support_x: inputs of support set (ways * shots) x C x H x W support_y: labels of support set (ways * shots) query_x : inputs of query set Q x C x H x W Returns: pred: predictions for query set """ # Encode all images proto_representations = self.encoder(support_x) query_representations = self.encoder(query_x) # Calculate prototypes for each class in the support set unique_labels = torch.unique(support_y) prototype_vectors = [] for label in unique_labels: indices = torch.where(support_y == label)[0] selected_features = proto_representations[indices] mean_vector = torch.mean(selected_features, dim=0) prototype_vectors.append(mean_vector.unsqueeze(dim=0)) prototype_vectors = torch.cat(prototype_vectors, dim=0) # Compute distance between query features and prototypes dists = euclidean_dist(query_representations, prototype_vectors) log_p_y = F.log_softmax(-dists, dim=1).view(ways, shots, -1) return log_p_y def euclidean_dist(x, y): n = x.size(0) m = y.size(0) d = x.size(1) assert d == y.size(1) x = x.unsqueeze(1).expand(n, m, d) y = y.unsqueeze(0).expand(n, m, d) return torch.pow(x - y, 2).sum(2) # Define an example CNN Encoder architecture suitable for Omniglot dataset encoder = ConvolutionalNeuralNetwork() model = ProtoNet(encoder) # Assume we have preprocessed datasets ready here... support_images, support_labels = ... query_images = ... output = model(support_images, support_labels, query_images) ``` This implementation demonstrates setting up a simple prototypical network which computes Euclidean distances between embedded representations of queries against learned class means derived from supports during training phase. For further exploration into semi-supervised settings or incorporating additional mechanisms like kNN attention pooling layers mentioned elsewhere, modifications would need to be made accordingly based on specific requirements outlined in relevant literature[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值