BERT 原理与代码实战案例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:BERT,自然语言处理,深度学习,预训练语言模型,代码实战
1. 背景介绍
1.1 问题的由来
自然语言处理(NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解和生成人类语言。然而,传统的NLP方法往往依赖于大量手工特征工程,且在特定任务上的表现有限。为了解决这一问题,研究人员提出了预训练语言模型(Pre-trained Language Models),其中BERT(Bidirectional Encoder Representations from Transformers)是最具代表性的模型之一。
1.2 研究现状
BERT自2018年由Google AI团队提出以来,在多项NLP任务上取得了显著的成绩,包括文本分类、情感分析、问答系统等。众多研究人员和工程师开始关注BERT,并将其应用于各种实际场景。
1.3 研究意义
BERT的出现,标志着NLP领域从规则驱动向数据驱动转变,为NLP研究提供了新的思路和方法。本文旨在深入解析BERT的原理,并通过代码实战案例讲解如何将其应用于实际项目中。
1.4 本文结构
本文将首先介绍BERT的核心概念和联系,然后