数据治理 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词
数据治理、数据质量、数据安全、数据生命周期、数据管理
1. 背景介绍
1.1 问题的由来
随着信息技术的飞速发展,数据已经成为企业和社会的关键资产。然而,数据的质量、安全性和一致性成为制约数据价值发挥的关键因素。数据治理(Data Governance)作为一种管理和控制数据的策略和方法,旨在确保数据在整个生命周期中的质量、安全和合规性。
1.2 研究现状
近年来,数据治理领域的研究取得了显著进展。研究者们提出了多种数据治理框架、方法和工具,如数据质量管理、数据安全治理、数据生命周期管理等。然而,如何将这些方法有效结合,构建一个全面、高效的数据治理体系,仍然是一个挑战。
1.3 研究意义
数据治理对于企业和社会具有重要意义:
- 提高数据质量,确保数据准确、一致、可信。
- 保障数据安全,防范数据泄露、篡改等风险。
- 促进数据共享和交换,提高数据利用率。
- 满足合规性要求,降低合规风险。
1.4 本文结构
本文将围绕数据治理的原理和代码实例进行讲解,主要包括以下内容:
- 数据治理的核心概念和联系