【AI 大规模语言模型从理论到实践】 LLM 大模型架构

在这里插入图片描述

大规模语言模型从理论到实践:模型架构

关键词:大规模语言模型、Transformer架构、自注意力机制、多头注意力、前馈神经网络、层归一化、残差连接

1. 背景介绍

大规模语言模型(Large Language Models,LLMs)近年来在自然语言处理领域取得了突破性进展,引领了人工智能领域的新革命。这些模型能够理解和生成人类语言,执行各种复杂的语言任务,如文本生成、问答系统、机器翻译等。本文将深入探讨大规模语言模型的核心——模型架构,从理论基础到实践应用,全面解析这一前沿技术。

1.1 大规模语言模型的发展历程

大规模语言模型的发展可以追溯到早期的统计语言模型,经历了多个重要阶段:

  1. 统计语言模型:基于n-gram的概率模型
  2. 神经网络语言模型:使用前馈神经网络和循环神经网络
  3. 序列到序列模型:引入编码器-解码器架构
  4. 注意力机制:解决长序列依赖问题
  5. Transformer架构:全注意力
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值