大规模语言模型从理论到实践:模型架构
关键词:大规模语言模型、Transformer架构、自注意力机制、多头注意力、前馈神经网络、层归一化、残差连接
1. 背景介绍
大规模语言模型(Large Language Models,LLMs)近年来在自然语言处理领域取得了突破性进展,引领了人工智能领域的新革命。这些模型能够理解和生成人类语言,执行各种复杂的语言任务,如文本生成、问答系统、机器翻译等。本文将深入探讨大规模语言模型的核心——模型架构,从理论基础到实践应用,全面解析这一前沿技术。
1.1 大规模语言模型的发展历程
大规模语言模型的发展可以追溯到早期的统计语言模型,经历了多个重要阶段:
- 统计语言模型:基于n-gram的概率模型
- 神经网络语言模型:使用前馈神经网络和循环神经网络
- 序列到序列模型:引入编码器-解码器架构
- 注意力机制:解决长序列依赖问题
- Transformer架构:全注意力