从零开始大模型开发与微调:基于PyTorch 2.0的强化学习实战
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
随着人工智能技术的飞速发展,大模型(Large Models)在自然语言处理、计算机视觉、语音识别等领域取得了显著的成果。然而,大模型的开发与微调仍然是一个复杂且具有挑战性的任务。特别是,强化学习(Reinforcement Learning,RL)作为一种有效的学习方式,在构建智能体(Agent)进行决策时具有重要意义。本文旨在从零开始,介绍如何使用PyTorch 2.0进行大模型的开发与微调,并通过强化学习实战,展示其应用价值。
1.2 研究现状
近年来,大模型的研究取得了丰硕的成果。例如,GPT-3、BERT、ViT等模型在各自领域表现出色。然而,大模型的开发与微调仍然面临诸多挑战,如计算资源、数据量、模型可解释性等。此外,强化学习作为一种新兴的学习方式,在近年来也得到了广泛关注,其在决策、控制等领域具有广泛的应用前景。