从零开始大模型开发与微调:基于PyTorch 2.0的强化学习实战

从零开始大模型开发与微调:基于PyTorch 2.0的强化学习实战

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

随着人工智能技术的飞速发展,大模型(Large Models)在自然语言处理、计算机视觉、语音识别等领域取得了显著的成果。然而,大模型的开发与微调仍然是一个复杂且具有挑战性的任务。特别是,强化学习(Reinforcement Learning,RL)作为一种有效的学习方式,在构建智能体(Agent)进行决策时具有重要意义。本文旨在从零开始,介绍如何使用PyTorch 2.0进行大模型的开发与微调,并通过强化学习实战,展示其应用价值。

1.2 研究现状

近年来,大模型的研究取得了丰硕的成果。例如,GPT-3、BERT、ViT等模型在各自领域表现出色。然而,大模型的开发与微调仍然面临诸多挑战,如计算资源、数据量、模型可解释性等。此外,强化学习作为一种新兴的学习方式,在近年来也得到了广泛关注,其在决策、控制等领域具有广泛的应用前景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值