Transformer大模型实战 WordPiece

Transformer大模型实战 WordPiece

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

关键词

Transformer, WordPiece, 大模型, 自然语言处理, 机器翻译, 语音识别

1. 背景介绍

1.1 问题的由来

随着自然语言处理(NLP)领域的不断发展,如何处理和表示自然语言中的词汇问题逐渐成为研究热点。传统的NLP方法通常使用词袋模型(Bag-of-Words)或基于词典的方法来表示文本,这些方法在处理长文本和复杂词汇时存在局限性。WordPiece是一种将词汇分解为更小单元(token)的方法,它能够有效地处理长文本和未知词汇,被广泛应用于Transformer大模型中。

1.2 研究现状

近年来,随着深度学习技术的飞速发展,基于Transformer的大模型在NLP领域取得了显著的成果。WordPiece作为Transformer模型的基础,其研究和应用也得到了广泛的关注。目前,已有许多研究者对WordPiece进行了改进和优化,以提高其在不同场景下的性能。

1.3 研究意义

Word

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值