Transformer大模型实战 WordPiece
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词
Transformer, WordPiece, 大模型, 自然语言处理, 机器翻译, 语音识别
1. 背景介绍
1.1 问题的由来
随着自然语言处理(NLP)领域的不断发展,如何处理和表示自然语言中的词汇问题逐渐成为研究热点。传统的NLP方法通常使用词袋模型(Bag-of-Words)或基于词典的方法来表示文本,这些方法在处理长文本和复杂词汇时存在局限性。WordPiece是一种将词汇分解为更小单元(token)的方法,它能够有效地处理长文本和未知词汇,被广泛应用于Transformer大模型中。
1.2 研究现状
近年来,随着深度学习技术的飞速发展,基于Transformer的大模型在NLP领域取得了显著的成果。WordPiece作为Transformer模型的基础,其研究和应用也得到了广泛的关注。目前,已有许多研究者对WordPiece进行了改进和优化,以提高其在不同场景下的性能。
1.3 研究意义
Word