simultaneous localization and mapping
1.背景介绍
1.1 什么是SLAM?
同时定位与地图构建(Simultaneous Localization and Mapping, SLAM)是机器人领域中一个核心问题,旨在在未知环境中构建环境地图的同时估计机器人自身在该地图中的位置。SLAM技术广泛应用于自动驾驶汽车、服务机器人、无人机等多个领域。
1.2 SLAM的重要性
SLAM是实现真正自主导航的关键技术,它解决了机器人在未知环境中自主探索和建图的难题。有了SLAM,机器人就能够持续定位自身位置,并且逐步构建出环境地图,从而实现自主导航和决策。
1.3 SLAM的挑战
SLAM问题是一个典型的鸡生蛋、蛋生鸡的难题。要估计机器人的运动,需要知道环境地图;但要构建环境地图,也需要知道机器人的运动。此外,SLAM还面临着实时性、鲁棒性、计算复杂度等诸多挑战。
2.核心概念与联系
2.1 概率机器人定位
机器人定位是指估计机器人在给定地图中的位置和姿态。常用的方法有:
- 蒙特卡罗定位(Monte Carlo Localization)
- 卡尔曼滤波定位(Kalman Filter Localization)
- 图优化定位(Graph-bas