LSA主题模型:基于奇异值分解的主题模型
1.背景介绍
主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。
LSA(Latent Semantic Analysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和文档之间的潜在语义关系。本文将深入探讨LSA的原理、算法实现、应用实践以及未来的发展趋势。