LSA主题模型:基于奇异值分解的主题模型

LSA主题模型:基于奇异值分解的主题模型

1.背景介绍

主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。

LSA(Latent Semantic Analysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和文档之间的潜在语义关系。本文将深入探讨LSA的原理、算法实现、应用实践以及未来的发展趋势。

1.1 主题模型简介

1.1.1 主题模型的定义与作用
1.1.2 主题模型的发展历程
1.1.3 常见的主题模型算法

1.2 LSA模型的起源与发展

1.2.1 LSA模型的提出
1.2.2 LSA模型的改进与扩展
1.2.3 LSA模型的应用领域

2.核心概念与联系

2.1 词-文档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值