Cascade RCNN原理与代码实例讲解

Cascade R-CNN原理与代码实例讲解

1. 背景介绍

1.1 目标检测概述

目标检测是计算机视觉领域的一个基础性问题,旨在从图像或视频中检测出感兴趣的目标对象,并给出其类别和位置信息。它在安防监控、无人驾驶、医学影像分析等领域有广泛应用。

1.2 两阶段检测器的发展

近年来,以R-CNN为代表的两阶段检测器取得了巨大进展。Fast R-CNN通过ROI Pooling实现特征共享,提升了检测速度;Faster R-CNN引入区域建议网络(RPN),实现了端到端训练;R-FCN用位置敏感得分图代替全连接层,进一步加速检测。

1.3 Cascade R-CNN的提出

尽管上述方法性能不断提升,但在处理不同尺度、不同IoU阈值下的目标时仍面临挑战。为此,Cai等人提出了Cascade R-CNN,通过级联多个检测器来提升检测精度,特别是在高IoU阈值下的表现。

2. 核心概念与联系

2.1 检测器级联

Cascade R-CNN的核心思想是将目标检测问题分解为一系列子问题,每个子问题由一个检测器专门负责。不同检测器使用不同的IoU阈值,依次对候选区域进行预测和筛选,最终输出高质量的检测结果。

2.2 IoU阈值递增

传统检测器通常使用固定的IoU阈值(如0.5)来判

In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usually produces noisy detections. However, detection per- formance tends to degrade with increasing the IoU thresh- olds. Two main factors are responsible for this: 1) over- fitting during training, due to exponentially vanishing pos- itive samples, and 2) inference-time mismatch between the IoUs for which the detector is optimal and those of the in- put hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, is proposed to address these prob- lems. It consists of a sequence of detectors trained with increasing IoU thresholds, to be sequentially more selec- tive against close false positives. The detectors are trained stage by stage, leveraging the observation that the out- put of a detector is a good distribution for training the next higher quality detector. The resampling of progres- sively improved hypotheses guarantees that all detectors have a positive set of examples of equivalent size, reduc- ing the overfitting problem. The same cascade procedure is applied at inference, enabling a closer match between the hypotheses and the detector quality of each stage. A simple implementation of the Cascade R-CNN is shown to surpass all single-model object detectors on the challeng- ing COCO dataset. Experiments also show that the Cas- cade R-CNN is widely applicable across detector architec- tures, achieving consistent gains independently of the base- line detector strength. The code will be made available at https://github.com/zhaoweicai/cascade-rcnn.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值