Cascade R-CNN原理与代码实例讲解
1. 背景介绍
1.1 目标检测概述
目标检测是计算机视觉领域的一个基础性问题,旨在从图像或视频中检测出感兴趣的目标对象,并给出其类别和位置信息。它在安防监控、无人驾驶、医学影像分析等领域有广泛应用。
1.2 两阶段检测器的发展
近年来,以R-CNN为代表的两阶段检测器取得了巨大进展。Fast R-CNN通过ROI Pooling实现特征共享,提升了检测速度;Faster R-CNN引入区域建议网络(RPN),实现了端到端训练;R-FCN用位置敏感得分图代替全连接层,进一步加速检测。
1.3 Cascade R-CNN的提出
尽管上述方法性能不断提升,但在处理不同尺度、不同IoU阈值下的目标时仍面临挑战。为此,Cai等人提出了Cascade R-CNN,通过级联多个检测器来提升检测精度,特别是在高IoU阈值下的表现。
2. 核心概念与联系
2.1 检测器级联
Cascade R-CNN的核心思想是将目标检测问题分解为一系列子问题,每个子问题由一个检测器专门负责。不同检测器使用不同的IoU阈值,依次对候选区域进行预测和筛选,最终输出高质量的检测结果。
2.2 IoU阈值递增
传统检测器通常使用固定的IoU阈值(如0.5)来判