Ranger原理与代码实例讲解
1.背景介绍
在机器学习和数据科学领域,决策树算法因其简单、高效且可解释性强而广受欢迎。然而,传统决策树算法在处理高维数据时容易过拟合,导致泛化能力差。为了解决这一问题,提出了随机森林(Random Forest)算法,通过构建多棵决策树并进行集成来提高模型的性能。但是,随机森林在训练过程中,每棵树的构建都是相互独立的,没有利用之前树的信息,这在一定程度上限制了其性能。
Ranger(Random Angmented Regression Trees)算法作为随机森林的一种改进版本,通过在每棵树的训练过程中引入残差学习,利用之前树的信息来提高后续树的准确性,从而进一步提升了整个模型的性能。Ranger算法在保留了随机森林简单高效的优点的同时,显著提高了模型的准确性和泛化能力,因此在工业界和学术界都受到了广泛关注。
2.核心概念与联系
2.1 决策树
决策树是一种基于树形结构的监督学习算法,通过对特征进行递归分裂来构建决策树模型。决策树算法包括特征选择、树的生成、剪枝等步骤,具有可解释性强、无需特征缩放等优点。但传统决策树容易过拟合,泛化能力差。
2.2 随机森林
随机森林是一种集成学习算法,它通过构建多棵决策树并对它们的预测结果进行平均来提高模型的性能和泛化能力。在构建每棵决策树时,随机森林会从原始训练集中有放回地抽取部分样本(Bootstrap Sampling),并在节点分裂时只考虑部分特征(Feature Bagging),从而引入了随机性,减少