1. 背景介绍
1.1 强化学习概述
强化学习 (Reinforcement Learning, RL) 是一种机器学习方法,它使智能体 (agent) 能够通过与环境互动来学习最佳行为。智能体在环境中执行动作,并接收奖励或惩罚作为反馈。通过最大化累积奖励,智能体学会在特定环境中采取最佳行动。
1.2 Q-Learning 简介
Q-Learning 是一种经典的强化学习算法,它使用 Q 表来存储状态-动作对的价值。Q 表中的每个条目表示在特定状态下采取特定动作的预期未来奖励。智能体通过不断更新 Q 表来学习最佳策略。
1.3 Deep Q-Learning 的优势
传统的 Q-Learning 方法在处理高维状态空间时会遇到问题,因为 Q 表的大小会随着状态空间的增长而呈指数级增长。Deep Q-Learning (DQN) 利用深度神经网络来逼近 Q 函数,从而克服了这一限制。DQN 可以处理高维状态空间,并在许多复杂任务中取得了成功。
2. 核心概念与联系
2.1 状态 (State)
状态是指环境的当前状况,它包含了智能体做出决策所需的所有信息。例如,在 Atari 游戏中,状态可以是游戏屏幕的像素值。
2.2 动作 (Action)
动作是指智能体可以在环境中执行的操作。例如,在 Atari 游戏中,动作可以