Deep QLearning原理与代码实例讲解

1. 背景介绍

1.1 强化学习概述

强化学习 (Reinforcement Learning, RL) 是一种机器学习方法,它使智能体 (agent) 能够通过与环境互动来学习最佳行为。智能体在环境中执行动作,并接收奖励或惩罚作为反馈。通过最大化累积奖励,智能体学会在特定环境中采取最佳行动。

1.2 Q-Learning 简介

Q-Learning 是一种经典的强化学习算法,它使用 Q 表来存储状态-动作对的价值。Q 表中的每个条目表示在特定状态下采取特定动作的预期未来奖励。智能体通过不断更新 Q 表来学习最佳策略。

1.3 Deep Q-Learning 的优势

传统的 Q-Learning 方法在处理高维状态空间时会遇到问题,因为 Q 表的大小会随着状态空间的增长而呈指数级增长。Deep Q-Learning (DQN) 利用深度神经网络来逼近 Q 函数,从而克服了这一限制。DQN 可以处理高维状态空间,并在许多复杂任务中取得了成功。

2. 核心概念与联系

2.1 状态 (State)

状态是指环境的当前状况,它包含了智能体做出决策所需的所有信息。例如,在 Atari 游戏中,状态可以是游戏屏幕的像素值。

2.2 动作 (Action)

动作是指智能体可以在环境中执行的操作。例如,在 Atari 游戏中,动作可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值