1. 背景介绍
1.1 目标检测的挑战
目标检测是计算机视觉领域中的一个重要任务,旨在识别图像或视频中存在的目标及其位置。这项任务面临着诸多挑战,包括:
- 目标尺寸差异: 现实世界中的目标尺寸变化很大,从微小的昆虫到大型车辆。
- 目标形态多样: 目标可以呈现各种形状和姿态,例如,人可以站立、坐着或躺着。
- 背景复杂: 目标可能被遮挡或与背景融合,难以区分。
1.2 深度学习的兴起
近年来,深度学习技术在目标检测领域取得了显著进展。卷积神经网络 (CNN) 由于其强大的特征提取能力,成为了目标检测的主流方法。
1.3 Faster R-CNN的诞生
Faster R-CNN 是一种基于深度学习的目标检测算法,由 Shaoqing Ren 等人于 2015 年提出。该算法在速度和精度方面取得了突破,成为了当时最先进的目标检测算法之一。
2. 核心概念与联系
2.1 区域建议网络 (RPN)
Faster R-CNN 引入了区域建议网络 (Region Proposal Network, RP