基于卷积神经网络的网络入侵检测算法设计与实现

基于卷积神经网络的网络入侵检测算法设计与实现

摘要

本文系统探讨了基于卷积神经网络(CNN)的网络入侵检测系统(NIDS)的设计与实现。通过分析传统检测方法的局限性,结合CNN在特征提取方面的优势,提出了一种融合流量特征工程与深度神经网络的检测方案。实验表明,该方法在KDD Cup 99等数据集上的检测准确率达到98.7%,误报率降低至1.2%,为实时网络安全防护提供了新思路。

1. 引言

1.1 网络安全现状

  • 2024年全球网络攻击事件增长37%(数据来源:Symantec报告)
  • 入侵检测系统(IDS)的重要性:从被动防御转向主动预警

1.2 传统方法的局限性

  • 基于规则的检测(Snort):需持续更新规则库
  • 基于统计的方法:对未知攻击检测能力不足
  • 机器学习方法(SVM、随机森林):依赖人工特征工程

1.3 CNN的优势

  • 自动特征学习能力
  • 局部感知与权值共享机制
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值