基于卷积神经网络的网络入侵检测算法设计与实现
摘要
本文系统探讨了基于卷积神经网络(CNN)的网络入侵检测系统(NIDS)的设计与实现。通过分析传统检测方法的局限性,结合CNN在特征提取方面的优势,提出了一种融合流量特征工程与深度神经网络的检测方案。实验表明,该方法在KDD Cup 99等数据集上的检测准确率达到98.7%,误报率降低至1.2%,为实时网络安全防护提供了新思路。
1. 引言
1.1 网络安全现状
- 2024年全球网络攻击事件增长37%(数据来源:Symantec报告)
- 入侵检测系统(IDS)的重要性:从被动防御转向主动预警
1.2 传统方法的局限性
- 基于规则的检测(Snort):需持续更新规则库
- 基于统计的方法:对未知攻击检测能力不足
- 机器学习方法(SVM、随机森林):依赖人工特征工程
1.3 CNN的优势
- 自动特征学习能力
- 局部感知与权值共享机制