1. 背景介绍
1.1 图像分类的挑战
图像分类是计算机视觉领域中的一个基础任务,其目标是将输入图像分配到预定义的类别之一。近年来,深度学习的兴起极大地推动了图像分类技术的进步,涌现出许多高性能的模型,如ResNet、Inception等。然而,图像分类仍然面临着一些挑战,例如:
- 数据增强:深度学习模型通常需要大量的训练数据才能获得良好的泛化能力。数据增强是一种常用的技术,通过对训练数据进行随机变换来扩充数据集,从而提高模型的鲁棒性和泛化能力。
- 过拟合:当模型过于复杂时,容易出现过拟合现象,即模型在训练集上表现良好,但在测试集上表现较差。
- 对抗样本:对抗样本是指经过精心设计的输入,可以欺骗模型做出错误的预测。
1.2 Mixup的引入
为了解决上述挑战,Zhang等人于2017年提出了Mixup数据增强方法。Mixup是一种简单而有效的技术,它通过线性插值的方式组合不同的训练样本,生成新的训练数据。Mixup已被证明可以提高模型的泛化能力、鲁棒性和对对抗样本的抵抗力。