主成分分析PCA原理与代码实例讲解

主成分分析PCA原理与代码实例讲解

作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 问题的由来

在数据分析中,我们常常面临数据维度较高的问题。例如,一个包含100个特征的样本,可能存在冗余信息,即多个特征之间存在高度相关性。这种情况下,直接使用所有特征进行建模或分析,不仅计算复杂度高,而且可能会降低模型的解释性和泛化能力。

主成分分析(Principal Component Analysis,PCA)是一种经典的降维技术,旨在将高维数据转化为低维数据,同时保留大部分原有信息。通过PCA,我们可以简化数据结构,降低计算复杂度,并提高模型的性能。

1.2 研究现状

PCA在众多领域都有着广泛的应用,如机器学习、数据挖掘、信号处理等。近年来,随着深度学习的兴起,PCA也被用于特征提取和降维,以提高模型的训练效率和精度。

1.3 研究意义

PCA具有以下意义:

  • 降维:减少数据维度,降低计算复杂度࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值