主成分分析PCA原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
在数据分析中,我们常常面临数据维度较高的问题。例如,一个包含100个特征的样本,可能存在冗余信息,即多个特征之间存在高度相关性。这种情况下,直接使用所有特征进行建模或分析,不仅计算复杂度高,而且可能会降低模型的解释性和泛化能力。
主成分分析(Principal Component Analysis,PCA)是一种经典的降维技术,旨在将高维数据转化为低维数据,同时保留大部分原有信息。通过PCA,我们可以简化数据结构,降低计算复杂度,并提高模型的性能。
1.2 研究现状
PCA在众多领域都有着广泛的应用,如机器学习、数据挖掘、信号处理等。近年来,随着深度学习的兴起,PCA也被用于特征提取和降维,以提高模型的训练效率和精度。
1.3 研究意义
PCA具有以下意义:
- 降维:减少数据维度,降低计算复杂度