自然语言处理(NLP)原理与代码实战案例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个重要分支,旨在让计算机理解和处理人类语言。随着互联网的普及和大数据时代的到来,NLP技术得到了快速发展,并在语音助手、机器翻译、智能客服、推荐系统等领域得到了广泛应用。
1.2 研究现状
近年来,NLP技术取得了重大突破,主要体现在以下几个方面:
- 预训练模型: 以BERT、GPT为代表的大型预训练模型在NLP领域取得了巨大成功,使得模型在各个任务上取得了显著的性能提升。
- 多模态融合: NLP技术与其他领域的结合,如计算机视觉、语音识别等,实现了多模态数据的融合处理。
- 跨语言处理: 跨语言处理技术使得NLP技术可以应用于不同语言的数据处理任务。
- 可解释性和可解释性: NLP技术的研究逐渐关注模型的可解释性和可解释性,以便更好地理解模型的工作原理。
1.3 研究意义
NLP技术的研究对于推动人工智能的发展具有重要意义: