第1章:大模型时代概述
1.1 大模型时代的背景
大模型时代,是指以深度学习、神经网络等先进技术为核心,通过大规模数据训练构建出具有高度智能的模型,以应对复杂问题的时代。这一时代的背景可以从以下几个方面进行阐述:
首先,计算能力的飞速提升为大规模模型的发展提供了坚实的技术基础。随着GPU、TPU等专用计算设备的出现和普及,计算速度和存储容量得到了极大提升,使得训练大型神经网络成为可能。
其次,数据量的爆炸性增长为大规模模型的训练提供了丰富的资源。互联网的发展使得各类数据得以快速积累,从图片、文本到语音、视频,数据种类和数量不断增加,为模型训练提供了丰富的素材。
再次,深度学习理论的不断完善和算法的创新为大规模模型的实现提供了理论支持。例如,ResNet、Transformer等架构的出现,不仅提高了模型的性能,还推动了模型规模的不断扩大。
最后,商业需求的驱动也是大模型时代的重要背景。随着人工智能在各行各业的广泛应用,企业对智能化的需求日益增长,大模型成为解决复杂问题的利器,推动了这一时代的发展。
1.2 大模型技术的发展历程
大模型技术的发展历程可以追溯到20世纪80年代,随着反向传播算法的提出和神经网络理论的逐步完善&#