大语言模型原理基础与前沿 其他节省内存的设计

《大语言模型原理基础与前沿 其他节省内存的设计》

关键词:大语言模型、Transformer、自注意力机制、参数共享、低秩分解、混合精度训练

摘要:本文深入探讨了大规模语言模型的原理、前沿技术以及内存节省设计。从基础概念到高级优化,本文涵盖了语言模型的各个层面,并特别关注如何通过技术创新节省内存资源,提升模型的实际应用效果。


目录大纲

  1. 大语言模型基础 1.1 大语言模型概述 1.2 大语言模型的架构与原理 1.3 大语言模型的数学基础
  2. 大语言模型的前沿研究 2.1 生成对抗网络(GAN)与大语言模型 2.2 元学习与大语言模型
  3. 节省内存的大语言模型设计 3.1 内存优化技术 3.2 内存高效的计算架构
  4. 大语言模型的部署与优化 4.1 大语言模型的部署策略 4.2 大语言模型的性能优化
  5. 大语言模型应用案例 5.1 智能客服系统 5.2 智能写作助手
  6. 大语言模型未来发展趋势 6.1 大模型的发展趋势 6.2 开放性问题与研究方向
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值