《大语言模型原理基础与前沿 其他节省内存的设计》
关键词:大语言模型、Transformer、自注意力机制、参数共享、低秩分解、混合精度训练
摘要:本文深入探讨了大规模语言模型的原理、前沿技术以及内存节省设计。从基础概念到高级优化,本文涵盖了语言模型的各个层面,并特别关注如何通过技术创新节省内存资源,提升模型的实际应用效果。
目录大纲
- 大语言模型基础 1.1 大语言模型概述 1.2 大语言模型的架构与原理 1.3 大语言模型的数学基础
- 大语言模型的前沿研究 2.1 生成对抗网络(GAN)与大语言模型 2.2 元学习与大语言模型
- 节省内存的大语言模型设计 3.1 内存优化技术 3.2 内存高效的计算架构
- 大语言模型的部署与优化 4.1 大语言模型的部署策略 4.2 大语言模型的性能优化
- 大语言模型应用案例 5.1 智能客服系统 5.2 智能写作助手
- 大语言模型未来发展趋势 6.1 大模型的发展趋势 6.2 开放性问题与研究方向