【论文阅读】DeepSeek-R1:通过强化学习激励LLMs的推理能力 | DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via RL

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
DeepSeek-R1:通过强化学习激励LLMs的推理能力

DeepSeek-AI
[email protected]

目录

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement LearningDeepSeek-R1:通过强化学习激励LLMs的推理能力

Abstract  摘要

1 Introduction  1 简介

1.1Contributions  1.1 贡献

Post-Training: Large-Scale Reinforcement Learning on the Base Model训练后:基于基础模型的大规模强化学习

Distillation: Smaller Models Can Be Powerful Too蒸馏:小型模型也可以很强大

1.2Summary of Evaluation Results1.2 评估结果摘要

2 Approach  2 方法

2.1Overview  2.1 概述

2.2 DeepSeek-R1-Zero: Reinforcement Learning on the Base Model2.2 DeepSeek-R1-Zero:基于基础模型的强化学习

2.2.1Reinforcement Learning Algorithm2.2.1 强化学习算法

Group Relative Policy Optimization组相对策略优化

2.2.2Reward Modeling  2.2.2 奖励建模

2.2.3 Training Template  2.2.3 训练模板

2.2.4 Performance, Self-evolution Process and Aha Moment of DeepSeek-R1-Zero2.2.4 性能、DeepSeek-R1-Zero 的自进化过程和 aha 时刻

Performance of DeepSeek-R1-ZeroDeepSeek-R1-Zero 的性能

Self-evolution Process of DeepSeek-R1-Zero深度 Seek-R1-Zero 的自我进化过程

Aha Moment of DeepSeek-R1-Zero啊哈时刻 深寻-R1-零

Drawback of DeepSeek-R1-ZeroDeepSeek-R1-Zero 的缺点

2.3 DeepSeek-R1: Reinforcement Learning with Cold Start2.3 DeepSeek-R1:冷启动下的强化学习

2.3.1Cold Start  2.3.1 冷启动

2.3.2Reasoning-oriented Reinforcement Learning2.3.2 以推理为导向的强化学习

2.3.3Rejection Sampling and Supervised Fine-Tuning2.3.3 拒绝采样和监督微调

Reasoning data  推理数据

Non-Reasoning data  非推理数据

2.3.4Reinforcement Learning for all Scenarios2.3.4 适用于所有场景的强化学习

2.4Distillation: Empower Small Models with Reasoning Capability2.4 蒸馏:赋予小型模型推理能力

3 Experiment  3 实验

Benchmarks  基准

Evaluation Prompts  评估提示

Baselines  基线

Evaluation Setup  评估设置

3.1DeepSeek-R1 Evaluation3.1 DeepSeek-R1 评估

3.2Distilled Model Evaluation3.2 蒸馏模型评估

4 Discussion  4 讨论

4.1 Distillation v.s. Reinforcement Learning4.1 蒸馏与强化学习

4.2 Unsuccessful Attempts  4.2 未遂尝试

Process Reward Model (PRM)进程奖励模型(PRM)

Monte Carlo Tree Search (MCTS)蒙特卡洛树搜索(MCTS)

5 Conclusion, Limitations, and Future Work5 结论、局限性及未来工作

References  参考文献

Appendix  附录

### DeepSeek-R1 强化学习激励 LLM 推理能力 #### 研究背景与动机 大型语言模型(LLMs)在自然语言处理领域取得了显著进展,但在复杂的推理任务上仍然存在挑战。为了提高这些模型的推理能力,研究人员尝试了多种方法。其中,DeepSeek团队提出了一种新的策略:直接应用强化学习RL),而不是传统的监督微调(SFT)。这种新方法不仅使模型能够探索更深层次的思维链(CoT),还展示了自我验证、反思以及生成长思维链的能力[^1]。 #### 方法论 ##### DeepSeek-R1-Zero DeepSeek-R1-Zero 是首个完全依靠大规模强化学习训练而成的推理模型,无需任何前期的监督微调。实验结果显示,在面对复杂问题时,该模型会自发增加思考的时间和深度,以此来优化解决方案的质量。这表明,通过适当的设计奖励机制,可以有效引导LLM向更具逻辑性和创造性的方向进化[^2]。 ##### DeepSeek-R1 尽管DeepSeek-R1-Zero表现出了惊人的潜力,但它同样暴露出了一些缺陷,比如较低的语言表达清晰度和较高的语义混乱率。针对这些问题,研究者开发了改进版——DeepSeek-R1。此版本引入了多阶段预训练流程及特别设计的人类友好的初始数据集(即所谓的“冷启动”数据),旨在改善最终输出的内容质量的同时保持高水平的推理效能[^3]。 #### 实验结果分析 通过对两个不同版本的表现对比可以看出: - **推理效率**:两者均能有效地完成指定的任务目标; - **输出品质**:相较于原始形态下的DeepSeek-R1-Zero而言,经过调整后的DeepSeek-R1明显提高了文本连贯性和易理解程度; - **适应范围**:由于采用了更加灵活的学习框架,使得后者具备更强泛化能力和应用场景扩展可能性[^4]。 ```python def compare_models(model_a, model_b): """ Compare two models based on reasoning efficiency and output quality. Args: model_a (str): Name of the first model to be compared. model_b (str): Name of the second model to be compared. Returns: dict: A dictionary containing comparison results between both models. """ result = { "reasoning_efficiency": None, "output_quality": None, "adaptability": None } # Simulate performance metrics gathering here... return result ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值