
万字图文详解布隆过滤器(Bloom Filter)原理
基础概念
布隆过滤器(Bloom Filter)是一种概率型数据结构,用于高效判断一个元素是否可能存在于某个集合中。它通过牺牲绝对准确性来换取极高的空间效率和查询速度,适用于能容忍一定误判的场景。以下是其原理的详细解析:
一、核心组成
-
位数组(Bit Array)
- 一个固定长度的二进制数组,所有位初始化为
0
。
- 例如:长度为
m=10
的位数组初始状态为 [0,0,0,0,0,0,0,0,0,0]
。
-
哈希函数(Hash Functions)