万字图文详解布隆过滤器(Bloom Filter)原理

在这里插入图片描述

万字图文详解布隆过滤器(Bloom Filter)原理

基础概念

布隆过滤器(Bloom Filter)是一种概率型数据结构,用于高效判断一个元素是否可能存在于某个集合中。它通过牺牲绝对准确性来换取极高的空间效率和查询速度,适用于能容忍一定误判的场景。以下是其原理的详细解析:

一、核心组成

  1. 位数组(Bit Array)

    • 一个固定长度的二进制数组,所有位初始化为 0
    • 例如:长度为 m=10 的位数组初始状态为 [0,0,0,0,0,0,0,0,0,0]
  2. 哈希函数(Hash Functions)

    • 使用 k
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值