要评估一个LLM(大型语言模型)的好坏,需要从多个维度综合考量,因为其能力涉及语言理解、生成、推理、安全等多个方面,单一指标无法全面反映模型质量。以下是关键评估维度及具体方法的分析:
1. 任务性能评估:在标准任务上的表现
LLM需在各类NLP任务中展示能力,常用基准测试和量化指标衡量:
- 通用语言理解:如GLUE(通用语言理解评估)、SuperGLUE(更难的通用任务),衡量模型在句子相似性、自然语言推断、问答等基础任务上的准确率。
- 知识与推理:MMLU(大规模多任务语言理解,涵盖57个学科)评估知识广度;GSM8K(小学数学题)、BBH(BIG-Bench Hard,复杂推理任务)评估逻辑推理能力;HumanEval(代码生成)评估专业领域能力。
- 生成质量:自动指标如BLEU(翻译)、ROUGE(摘要)衡量与参考文本的重叠度;Perplexity(困惑度)衡量模型对文本的预测能力(值越低越好