如何评估一个LLM(大型语言模型)的好坏?

要评估一个LLM(大型语言模型)的好坏,需要从多个维度综合考量,因为其能力涉及语言理解、生成、推理、安全等多个方面,单一指标无法全面反映模型质量。以下是关键评估维度及具体方法的分析:

1. 任务性能评估:在标准任务上的表现

LLM需在各类NLP任务中展示能力,常用基准测试和量化指标衡量:

  • 通用语言理解:如GLUE(通用语言理解评估)、SuperGLUE(更难的通用任务),衡量模型在句子相似性、自然语言推断、问答等基础任务上的准确率。
  • 知识与推理:MMLU(大规模多任务语言理解,涵盖57个学科)评估知识广度;GSM8K(小学数学题)、BBH(BIG-Bench Hard,复杂推理任务)评估逻辑推理能力;HumanEval(代码生成)评估专业领域能力。
  • 生成质量:自动指标如BLEU(翻译)、ROUGE(摘要)衡量与参考文本的重叠度;Perplexity(困惑度)衡量模型对文本的预测能力(值越低越好
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值