当AI训练遇到算力网络:如何在“数据洪流”与“算力电网”中优化路径?
关键词
AI训练策略、算力网络、分布式训练、通信优化、云边协同、梯度压缩、流水线并行
摘要
随着AI模型从“小作坊”(百万参数)进化到“超级工厂”(万亿参数),算力需求呈爆炸式增长,传统集中式训练已无法应对。算力网络(云-边-端协同的分布式算力基础设施)成为解决这一问题的关键,但通信瓶颈(延迟、带宽、可靠性)却成为训练效率的“绊脚石”。
本文将以“电力电网”类比算力网络,用“搬砖”“搭房子”解释并行训练逻辑,一步步拆解AI训练策略如何适配算力网络的特点:从数据并行的“流量优化”到模型并行的“分工协作”,从梯度压缩的“减肥术”到云边协同的“本地赋能”。结合PyTorch代码示例、Mermaid流程图和实际案例,为开发者提供可落地的优化方案,并展望未来算力网络与AI训练的融合趋势。