YOLOv8 加载模型并调用本地摄像头

YOLOv8 加载模型并调用本地摄像头,非常简单
from ultralytics import YOLO
from PIL import Image
import cv2
# Load a model
model = YOLO('yolov8n.pt')  # load an official detection model
# model = YOLO('yolov8n-seg.pt')  # load an official segmentation model
# model = YOLO('path/to/best.pt')  # load a custom model

# Track with the model
results = model.predict(source="0",show=True)
# results = model.track(source="https://youtu.be/LNwODJXcvt4", show=True, tracker="bytetrack.yaml")

### 使用YOLOv8模型通过摄像头实时检测物体 为了实现实时视频流中的物体检测,可以利用Python编程语言结合OpenCV库和YOLOv8模型。此方法能够高效地处理来自摄像头的数据执行目标识别任务。 #### 准备工作 确保已安装必要的依赖项: - `ultralytics`:用于加载预训练好的YOLOv8模型。 - `opencv-python-headless` 或者 `opencv-contrib-python`:提供图像处理功能和支持读取摄像设备输入的功能。 可以通过pip命令轻松完成这些软件包的安装: ```bash pip install ultralytics opencv-python-headless ``` 对于更复杂的应用场景,可能还需要其他辅助工具或框架支持,比如QtFusion和PySide6等,不过这取决于具体需求[^1]。 #### 加载YOLOv8模型 创建一个新的Python脚本来初始化YOLOv8模型实例,设置好相应的参数配置。这里假设已经有一个可用的`.pt`格式的权重文件。 ```python from ultralytics import YOLO model_path = "path/to/yolov8n.pt" model = YOLO(model_path) ``` #### 获取摄像头数据 接下来定义函数来获取来自默认摄像头或其他指定ID号的视频流。通常情况下,默认内部网络摄像头编号为0;如果有多个外接相机,则尝试不同的整数值直到找到合适的为止。 ```python import cv2 def get_camera_stream(camera_id=0): cap = cv2.VideoCapture(camera_id) if not cap.isOpened(): raise IOError(f"Cannot open camera with ID {camera_id}") return cap ``` #### 处理每一帧画面 编写循环结构不断抓取当前时刻的画面作为单张静态照片传入给YOLO算法做预测分析。同时,在原图上绘制边界框标记出被发现的目标对象位置信息以便直观显示效果。 ```python while True: ret, frame = cap.read() if not ret: break results = model(frame)[0] annotated_frame = results.plot() cv2.imshow('YOLOv8 Detection', annotated_frame) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break ``` 这段代码会持续捕获新帧直至按下键盘上的'Q'键停止程序运行。每次迭代过程中都会调用一次YOLO模型来进行推断操作将结果显示出来。 #### 清理资源 当结束整个流程之后记得释放占用的所有硬件接口连接以及关闭所有的窗口界面防止内存泄漏等问题发生。 ```python cap.release() cv2.destroyAllWindows() ``` 综上所述,上述过程展示了如何基于Python平台运用YOLOv8配合OpenCV快速构建一套简易版的实时夜视行人检测系统原型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值