使用anaconda3安装tensorflow后在pycharm中加载不了tensorflow库

本文介绍了在安装了Anaconda3和相关GPU环境后,如何在PyCharm中加载TensorFlow-GPU库。遇到的问题包括CUDA版本与显卡驱动不匹配、TensorFlow版本与CUDA不兼容,以及PyCharm中未显示TensorFlow库。通过调整CUDA版本、创建虚拟环境并正确设置解释器,最终成功使TensorFlow-GPU在PyCharm中可用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#安装过程space
注:cpu版本安装很简单且已有大量教程,这里主要讨论gpu版本安装的问题。

  1. 安装visual studio20xx ,这里版本自己选合适的就可以,博主的是gtx1060 +vs2017+cuda9.2+cudnn7;(注意只能是N卡),ps(大农企又躺枪)。
  2. 此处是版本适配:
    cuda和显卡需要适配,查看显卡驱动适配的cudnn版本如下:打开驱动->帮助->系统信息->组件,博主的高龄750ti如下图。


图中的cuda9.2.217就是现在我适合装的cuda版本(记得添加cuda的路径,具体见安装cuda

  1. 此处是安装连接:
    cuda安装链接
    cudnn下载链接(需要免费注册个英伟达的账号)
  2. 安装完vs和cuda及cudnn ,安装anaconda3,2019
### 安装支持 GPU 的 TensorFlow 为了在 PyCharm安装并配置支持 GPU 的 TensorFlow ,需遵循特定步骤来确保环境设置正确。 #### 创建 Anaconda 虚拟环境 创建一个新的 Anaconda 虚拟环境专门用于此项目可以避免依赖冲突。通过命令行执行以下操作: ```bash conda create --name tensorflow_gpu_env python=3.8 ``` 激活该虚拟环境以便后续安装所需的软件包: ```bash conda activate tensorflow_gpu_env ``` #### 安装 CUDA 和 cuDNN 由于 TensorFlow 支持 GPU 加速需要 NVIDIA 提供的 CUDA 工具集以及 cuDNN 深度神经网络的支持,在安装 TensorFlow-GPU 版本之前先确认已经按照官方文档指南完成了这些组件的安装[^1]。 #### 使用 conda 或 pip 安装 TensorFlow-GPU 推荐使用 `pip` 来安装最新版本的 TensorFlow 并启用 GPU 支持。注意要根据操作系统选择合适的二进制文件下载链接,并且保持 Python 解释器与所选 TensorFlow 版本兼容。 对于大多数情况来说,可以通过简单的 pip 命令完成安装: ```bash pip install tensorflow-gpu ``` 如果遇到任何问题或者想要更稳定的体验,则考虑采用 Conda 渠道进行安装: ```bash conda install tensorflow-gpu ``` #### 配置 PyCharm 识别新环境中的 TensorFlow 回到 PyCharm 设置界面 (File -> Settings),导航到 Project Interpreter 页面点击齿轮图标旁边的 "+" 号添加现有解释器指向刚才创建好的 anaconda virtual environment 下对应的 python.exe 文件位置;此时应该能够看到已成功加载包括 TensorFlow 在内的所有相关列表。 #### 测试安装是否成功 最后一步是在代码编辑区内编写简单测试脚本来验证 TensorFlow 是否能正常工作及其设备信息: ```python import tensorflow as tf print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) ``` 当运行上述程序时,如果有可用的 GPU 设备则会返回正整数值表示数量。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值