LS/MMSE信道估计,基于CS的MATLAB仿真
本文将会介绍如何使用MATLAB进行LS/MMSE信道估计及基于压缩感知(CS)的信道估计的仿真。我们首先介绍一下LS/MMSE信道估计的原理和步骤。
LS/MMSE信道估计的原理和步骤:
- 采用最小二乘法(LS)和最小均方误差(MMSE)两种方法进行信道估计。
- 对接收到的信号进行预处理,包括去除CP(循环前缀)和FFT(快速傅里叶变换)变换。
- 采用LS/MMSE算法,得到一个估计矩阵,然后对其进行解码和恢复真实信道矩阵。
- 将估计的信道矩阵作为后续信号处理的输入进行数据解码和恢复。
接下来,我们将介绍如何使用MATLAB进行LS/MMSE信道估计的仿真。
MATLAB实现LS/MMSE信道估计:
代码如下:
%信道估计
function [H] = Channel_estimate(signal, data_size, pilot_size, nfft)
pilot_interval = data_size/pilot_size;
pilot_symbol = zeros(pilot_size,1);
index = 0:pilot_interval:data_size-1;
pilot_symbol = signal(index+1); %根据帧长度、导频个数来获取导频位置,并得到导频符号
Pilot_idx_mat = repmat(index-pilot_interval, pilot_size, 1);
for i = 1:pilot_size