LS/MMSE信道估计,基于CS的MATLAB仿真

639 篇文章 ¥49.90 ¥99.00
本文详细介绍了如何使用MATLAB进行LS/MMSE和基于压缩感知(CS)的信道估计仿真,包括LS/MMSE的原理、步骤、MATLAB代码实现,以及基于CS的信道估计方法和MATLAB实现。通过提供的源代码,读者可以进行仿真实验和优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LS/MMSE信道估计,基于CS的MATLAB仿真

本文将会介绍如何使用MATLAB进行LS/MMSE信道估计及基于压缩感知(CS)的信道估计的仿真。我们首先介绍一下LS/MMSE信道估计的原理和步骤。

LS/MMSE信道估计的原理和步骤:

  1. 采用最小二乘法(LS)和最小均方误差(MMSE)两种方法进行信道估计。
  2. 对接收到的信号进行预处理,包括去除CP(循环前缀)和FFT(快速傅里叶变换)变换。
  3. 采用LS/MMSE算法,得到一个估计矩阵,然后对其进行解码和恢复真实信道矩阵。
  4. 将估计的信道矩阵作为后续信号处理的输入进行数据解码和恢复。

接下来,我们将介绍如何使用MATLAB进行LS/MMSE信道估计的仿真。

MATLAB实现LS/MMSE信道估计:

代码如下:

%信道估计
function [H] = Channel_estimate(signal, data_size, pilot_size, nfft)

pilot_interval = data_size/pilot_size;
pilot_symbol = zeros(pilot_size,1);
index = 0:pilot_interval:data_size-1;
pilot_symbol = signal(index+1); %根据帧长度、导频个数来获取导频位置,并得到导频符号
Pilot_idx_mat = repmat(index-pilot_interval, pilot_size, 1);
for i = 1:pilot_size

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值