使用apply函数根据特定条件生成新的数据列(Python)

230 篇文章 ¥49.90 ¥99.00
在Python中,利用pandas的apply函数可以根据条件为DataFrame生成新列。例如,当性别为'Male'且年龄超过30,薪资高于平均薪资时,个体被标记为'高收入男性';性别为'Female'且满足相同条件则为'高收入女性',否则标记为'普通员工'。通过计算平均薪资,结合lambda函数和apply,可以高效地完成这个任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用apply函数根据特定条件生成新的数据列(Python)

对于数据处理和分析,我们经常需要在DataFrame中增加或修改列,而pandas库提供了apply函数来实现这一目的。apply函数可以应用于DataFrame、Series和GroupBy对象。本文将介绍如何使用apply函数在DataFrame中根据条件生成新的数据列。

我们首先创建一个示例DataFrame:

import pandas as pd

data = {
   
   
    'Name': ['Alice', 'Bob', 'Charlie'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值