图像扰动模拟技术——数据增广的利器
为了提高深度学习模型的鲁棒性,减少过拟合,常常需要使用数据增广技术。而其中一项有效的数据增广技术就是图像畸变增强,也被称为图像扰动模拟。通过对原始图像进行扰动生成新的图像来增加训练集的样本量和多样性,以提高模型的泛化能力。在本文中,我们将介绍图像扰动的基本概念、实现方法,并给出Python代码示例。
一、什么是图像扰动
图像扰动就是对原始图像进行一定的“破坏”或输入噪声,从而生成与原图不同但仍保持相似特征的新图像。这些扰动包括旋转、平移、缩放、颜色失真等。图像扰动可以使得模型更好地适应各种场景的变化,比如光照条件、遮挡情况等。
二、常见的图像扰动方法
-
像素级扰动:改变图像的亮度、对比度、色调等像素级别的变化。
-
几何级扰动:改变图像的旋转角度、缩放比例、平移距离等几何级别的变化。
-
特征级扰动:增加、减小或删去图像中的某些部分,比如加上噪声、模糊等。
三、Python实现图像扰动
下面我们将介绍两个图像扰动的Python实现示例:
- 对称翻转
导入相关库
import numpy as np
import cv2
读入图像
img = cv2.imread(‘image.jpg