Scikit-learn K-Means++:一种高效的聚类算法
K-Means是一种常见的聚类算法,它通过迭代优化簇中心来对数据进行分组。为了避免随机初始化对聚类结果的影响,K-Means++增加了一种初始化方法,即选择更具有代表性的初始点。Scikit-learn是一个流行的Python机器学习库,其中提供了实现K-Means和K-Means++的函数。在本文中,我们将深入探讨Scikit-learn K-Means++算法,包括如何使用、原理和代码实现。
Scikit-learn K-Means++算法的使用非常简单,只需安装Scikit-learn并导入KMeans类即可。下面是一个演示示例,将其放在正确的环境中运行,可以看到聚类结果的可视化图:
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
# Generate sample data
X, y_true = make_blobs(n_samples=300, centers=4,
cluster_std=0.60, random_state=0)
# Apply K-Means++
kmeans = KMeans(n_clusters&#