pandas pivot、pivot_table和melt

这篇博客介绍了pandas库中的数据重塑方法,包括pivot函数用于行列转换,pivot_table处理重复数据并进行聚合操作,以及melt函数将宽格式数据转为长格式。详细讲解了各个函数的参数用法,并给出了实例演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas的pivot和pivot_table 用于表格数据的行列互换,而melt用于unpivot 表格数据。

1,pivot

有如下数据集: 

import pandas as pd
import numpy as np

table = {
    "Item":['Item0','Item0','Item1','Item1'],
"CType":['Gold','Bronze','Gold','Silver'],
"USD":[1,2,3,4],
"EU":[5,6,7,8]}

d = pd.DataFrame(table)

 

pivot 函数只有三个参数:index 用于指定索引,columns用于指定列,values用于指定透视的数值:

DataFrame.pivot(index=None, columns=None, values=None)

对d进行透视得到的结果如下图所示,其中CType是column name,Bronze、Gold和Silver是列值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悦光阴

你的鼓励是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值