极限学习机应用于入侵检测(一)

本文介绍了极限学习机(ELM)在入侵检测系统(IDS)中的应用,重点讨论了ELM的参数定义、训练和测试阶段。ELM因其快速训练速度和高泛化性能在处理大数据环境中的入侵检测问题时表现出优势。文中提出了单机实现(LE)和分布式实现(MR_ELM)两种方法,并通过实验表明,MR_ELM在保持高准确率的同时,具有更好的效率和可扩展性,适合大数据环境。实验结果验证了ELM在IDS领域的潜力,特别是在处理大规模数据集时的效率提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

    最近读了一篇2014年CCS的论文,Using Extreme Learning Machine for Intrusion Detection in a Big Data Environment,并对其内容进行了总结和扩展。

基本知识

     极限学习机(extreme learning machine)ELM是一种简单易用、有效的单隐层前馈神经网络SLFNs学习算法。2004年由南洋理工大学黄广斌副教授提出。传统的神经网络学习算法(如BP算法)需要人为设置大量的网络训练参数,并且很容易产生局部最优解。极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值以及隐元的偏置,并且产生唯一的最优解,因此具有学习速度快且泛化性能好的优点,目标是解决回归、二分类以及多分类问题。ELM是有监督的机器学习算法,单隐层前馈神经网络(single hidden layer feed-forward neural networks),意味着SLFN只有一个隐藏层,整个SLFN包括输入层、隐藏层、输出层。输入权重是输入层和隐藏层之间的权重,偏置是隐藏层神经元的阈值,输出权重是隐藏层和输出层之间的权重。

   

     神经网络的训练过程实质上就是求解中间层即隐藏层的参数信息,比如隐藏层层数、节点数、权重等。对于SLFN单隐层前反馈神经网络,训练阶段需要确定输入权重矩阵、隐藏层偏置矩阵和输出权重矩阵三个元素,对于ELM,隐藏层的输入权重矩阵和隐藏神经元偏置矩阵是随机生成的,服从任意连续概率分布,所以只需要求解输出权重矩阵,而不需要重复迭代地调整输入权值和隐藏层偏置,因此计算量和时间复杂度都会小很多,训练速度也会快很多,这就是ELM优于其他传统神经网络和机器学习算法的关键所在。若在线上系统的实际应用中,也会因为训练时间短而有一定优势,有关增量学习的内容还没有看到。

ELM参数定义




评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值