[踩坑]Vscode的jupyter notebook设置代理

问题描述

最近使用WSL2,挂了代理后,在~/.bashrc中设置了以下环境变量

export ALL_PROXY="http://172.29.48.1:7890"
export HTTP_PROXY="http://172.29.48.1:7890"
export HTTPS_PROXY="http://172.29.48.1:7890"

测试后,可以在WSL2环境中连接代理了,一切似乎都正常

然而使用Jupyter Notebook(通过Vscode插件)后,发现竟然连不上VPN,即以下命令会失败

!curl https://huggingface.co/

排查发现,在notebook里并不会加载~/.bashrc中的环境变量,参考https://github.com/microsoft/vscode-jupyter/issues/8270

并且在Notebook中使用!export的方式也是无效的,可以通过以下代码来验证

import os
os.getenv("ALL_PROXY")

解决方案

最后发现,必须使用魔术方法%env来设置才能起效果,即

%env ALL_PROXY=http://172.29.48.1:7890
%env HTTP_PROXY=http://172.29.48.1:7890
%env HTTPS_PROXY=http://172.29.48.1:7890

再次运行curl,发现解决

### 回答1: VSCode可以通过安装Jupyter插件来使用Jupyter Notebook。安装插件后,可以在VSCode中打开.ipynb文件,并在编辑器中运行代码块。同时,还可以使用VSCode的其他功能,如代码补全、调试等。 ### 回答2: VSCode 是一款非常强大的集成开发环境,可以用来写各种编程语言。而 Jupyter Notebook 则是由 Python 开发的一种交互式编程环境,可以用于数据分析、可视化、机器学习等领域。 现在,VSCode 支持使用 Jupyter Notebook,只需要安装一些插件和 Python 的相关库就可以了。下面是一些具体的步骤: 1. 安装 Python 和 VSCode。首先要确保电脑上安装了 Python 环境和 VSCode 编辑器,可以在官网下载安装包然后直接安装。 2. 安装 Python 插件。在 VSCode 的插件市场中搜索 Python 插件并安装。 3. 安装 Jupyter 插件。同样,在 VSCode 的插件市场中搜索 Jupyter 插件并安装。这个插件提供了 VSCode 中使用 Jupyter Notebook 的功能。 4. 准备 Python 包。在命令行中输入 `pip install jupyter` 安装 jupyter 包,这个包提供了 Jupyter Notebook 的核心功能。 5. 启动 Jupyter。在 VSCode 中打开一个 Python 文件,然后按下 Ctrl+Shift+P 打开命令面板,输入 "Jupyter: Create New Blank Notebook" 命令,就会启动 Jupyter。 6. 创建 notebook。在 Jupyter 的主页中,点击右上角的 "New",选择 "Python 3" 创建一个新的 notebook,就可以开始编写代码了。 总的来说,使用 VSCodeJupyter 插件可以方便地使用 Jupyter Notebook 的交互式编程和数据分析功能,并且可以利用 VSCode 的各种优秀的编辑器功能提升开发效率。 ### 回答3: VSCode 是一个非常流行的文本编辑器,除此之外,它还支持很多的插件,例如 Jupyter 插件,可以使得 VSCode 支持 Jupyter Notebook 的功能。那么,在 VSCode 中使用 Jupyter Notebook,具体需要怎样做呢? 首先,我们需要安装 Jupyter 插件,安装完毕之后,在 VSCode 中的侧边栏中,会新增一个 Jupyter 插件的区域,点击该区域中的“Add New Notebook”按钮,就可以新建一个 Jupyter Notebook。新建之后,VSCode 会打开一个新的分屏界面,界面的左侧为代码编辑区域,右侧为代码执行区域,可以在左侧的代码编辑区域中编写 Python 代码,并在右侧的代码执行区域中运行 Python 代码。在右侧的代码执行区域中,可以像在 Jupyter Notebook 中一样,逐个单元格地执行代码,也可以同时执行多个单元格,使用快捷键 Shift + Enter 进行执行。 除了基本的代码编辑和执行功能之外,VSCodeJupyter 插件还支持很多其他的功能,例如可以方便地添加或移动单元格、显示代码执行的时间、显示代码的输出结果等等。通过这些功能,我们可以更加方便地进行代码的编写和调试,从而提高工作效率。 总之,使用 VSCodeJupyter 插件可以让我们在 VSCode 中很方便地使用 Jupyter Notebook 的功能,提高工作效率和代码开发体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值