【面试】——如何处理高并发和超卖现象

1、 秒杀带来的问题:高并发和超卖

   1.高并发:大量用户同一时间抢购,网站瞬时访问量剧增,导致服务器压力大 
   2.超卖: 成功下订单买到商品的人数,超过数据库最大库存数量

2. 前端解决方案

A 扩容:
加机器,这是最简单的方法,通过增加前端池的整体承载量来抗峰值。
B 静态化:
将页面能够静态化的元素全部静态化,并减少动态元素,通过CDN加速来抗峰值 [内容分   发网络,缓存服务器]
C 限流:
ip限流.针对某一个ip地址,限制单位时间内访问次数 [防止黄牛刷单]
D:其他
在活动入口的地方设置关卡游戏或者问题环节,削弱峰值

3、后端出现高并发和超卖的原因

I:首先MySQL自身对于高并发的处理性能就会出现问题,一般来说,MySQL的处理性能会随着并发thread上升而上升,但是到了一定的并发度之后会出现明显的拐点,之后一路下降,最终甚至会比单thread的性能还要差。

II:其次,超卖的根结在于减库存操作是一个事务操作,需要先select,然后insert,最后update -1。最后这个-1操作是不能出现负数的,但是当多用户在有库存的情况下 并发操作,出现负数这是无法避免的。

III:最后,当减库存和高并发碰到一起的时候,

<think>嗯,用户现在问的是Java程序员面试中如何解决问题,并且希望用通俗易懂的方式解释,可能还需要举例或类比。首先,我需要回忆一下问题的定义常见的解决方案。通常发生在高并发情况下,多个用户同时购买同一商品,导致库存被扣减到负数,这显然是不合理的。所以,解决的关键在于保证库存扣减的原子性一致性。 接下来,我应该考虑用户可能的背景。用户之前在看谷粒商城的视频,可能在学习电商项目相关的技术,现在准备面试,需要解决问题。这说明用户可能对分布式系统高并发处理有一定的了解,但需要更简洁明了的解释,适合面试回答的结构。 用户要求通俗易懂,可能需要避免过于技术化的术语,或者至少在使用术语时给出简单的解释。比如,解释乐观锁的时候,可以用版本号或者时间戳的类比,让读者更容易理解。同时,用户可能需要具体的例子,比如用数据库的UPDATE语句来展示如何扣减库存,或者使用Redis的原子操作。 我需要分步骤来组织答案,确保每个解决方案都有清晰的步骤例子。比如,首先讲数据库层面的乐观锁,然后是分布式锁,接着是Redis的原子操作,最后是消息队列。每个方法都要说明原理、实现方式以及优缺点,这样用户在面试时可以根据具体情况选择不同的解决方案。 另外,用户可能想知道这些方法之间的区别应用场景,比如什么时候用数据库的乐观锁,什么时候需要用Redis或分布式锁。这时候可以加入一些对比,帮助用户理解不同方法的适用环境,比如在高并发量下,Redis的原子操作可能更高效,而分布式锁适用于分布式系统环境。 还要注意面试中可能会追问的问题,比如缓存数据库的一致性问题,或者如何处理分布式锁的失效。虽然用户没有直接提到,但提前准备这些扩展点会让回答更全面,帮助用户更好地应对面试。 最后,总结部分需要强调选择方案时要考虑的因素,比如并发量、系统架构复杂度等,并给出一个简单的决策树,比如先看是否单机,再看是否需要强一致性等。这可以帮助用户在实际应用中做出合适的选择。</think>好的!问题通俗来说就是“商品库存只有100件,结果出了150件”,这在电商秒杀等高并发场景下很常见。**核心解决思路:保证库存扣减的原子性(要么全成功,要么全失败)**。下面用类比+代码示例,分步骤解释常见方案。 --- ### **一、原因分析(先理解问题)** **场景举例**: 假设商品库存 `stock = 100`,AB两个用户同时下单,都读到 `stock=100`,各自扣减1,最终库存变成99,但实际应该扣到98。 **问题本质**: 高并发下,多个线程同时读取并修改同一个数据,导致数据不一致。 --- ### **二、解决方案(从简单到复杂)** --- #### **方案1:数据库乐观锁(适合中小并发)** **原理**:在更新库存时,检查当前库存是否最初查询时一致。 **类比**:网购时,商品页面显示“剩余3件”,结算时如果别人先买走,系统会提示“库存不足”。 **代码示例**: ```sql UPDATE product SET stock = stock - 1, version = version + 1 WHERE id = 1001 AND stock > 0 AND version = #{oldVersion}; ``` **解释**: - 更新时校验库存版本号(类似CAS机制),若其他线程已修改,则本次更新失败。 - 优点:简单,无需额外组件。 - 缺点:高并发下大量请求失败,需前端配合重试或提示。 --- #### **方案2:分布式锁(适合分布式系统)** **原理**:同一时间只允许一个线程操作库存。 **类比**:市收银台,一次只让一个人结账,其他人排队。 **代码示例(Redisson实现)**: ```java RLock lock = redisson.getLock("product_lock:" + productId); try { lock.lock(); // 加锁 // 查询库存 int stock = productService.getStock(productId); if (stock > 0) { productService.decreaseStock(productId); // 扣库存 } } finally { lock.unlock(); // 释放锁 } ``` **解释**: - 用分布式锁(如Redis或Zookeeper)保证同一时间只有一个线程能操作库存。 - 优点:强一致性。 - 缺点:性能较低(锁竞争),可能死锁。 --- #### **方案3:Redis原子操作(适合高并发)** **原理**:利用Redis的单线程特性,通过原子命令直接扣减库存。 **类比**:银行柜台只有一个窗口,所有操作按顺序处理。 **代码示例(Lua脚本保证原子性)**: ```lua -- KEYS[1]: 商品库存的Key(如product:1001:stock) local stock = tonumber(redis.call('GET', KEYS[1])) if stock > 0 then redis.call('DECR', KEYS[1]) -- 库存减1 return 1 -- 成功 else return 0 -- 失败 end ``` **Java调用**: ```java String script = "上述Lua脚本"; Long result = redisTemplate.execute( new DefaultRedisScript<>(script, Long.class), Collections.singletonList("product:1001:stock") ); if (result == 1) { // 扣库存成功,后续生成订单 } ``` **解释**: - Redis的 `DECR` 或 `INCRBY` 是原子操作,无需加锁。 - 优点:性能极高(适合秒杀场景)。 - 缺点:需处理缓存数据库的数据一致性。 --- #### **方案4:消息队列削峰(最终一致性)** **原理**:将请求先放入队列,由消费者逐个处理。 **类比**:餐厅排队取号,按号码顺序叫号入座。 **代码示例(RocketMQ)**: ```java // 用户下单请求先发到队列 rocketMQTemplate.send("order_topic", orderRequest); // 消费者异步处理 @RocketMQMessageListener(topic = "order_topic", consumerGroup = "order_group") public class OrderConsumer implements RocketMQListener<OrderRequest> { @Override public void onMessage(OrderRequest request) { // 这里处理扣库存生成订单 } } ``` **解释**: - 请求先进入队列,避免瞬时高并发压垮数据库。 - 优点:系统更稳定。 - 缺点:用户不能实时知道结果(需轮询或通知)。 --- ### **三、方案对比与选择** | 方案 | 适用场景 | 优点 | 缺点 | |---------------|------------------------|-----------------------|-----------------------| | 数据库乐观锁 | 中小并发,简单业务 | 实现简单 | 高并发下失败率高 | | 分布式锁 | 分布式系统,强一致性 | 数据强一致 | 性能较低,可能死锁 | | Redis原子操作 | 高并发(如秒杀) | 性能极高 | 需维护缓存一致性 | | 消息队列 | 允许延迟,最终一致性 | 系统吞吐量高 | 实时性差 | --- ### **四、面试加分回答** 1. **组合使用**:比如用Redis预扣库存(原子操作)+ 消息队列异步生成订单 + 数据库最终落库。 2. **扩展问题**: - 如果Redis挂了怎么办?—— 可结合数据库兜底,或使用本地缓存+限流。 - (实际有库存但没出)如何平衡?—— 设置安全库存阈值,或异步补货。 --- **总结**:根据业务场景选择合适的方案,比如秒杀用Redis+Lua,普通抢购用乐观锁或队列。关键点:**原子性、隔离性、最终一致性**。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值