MMDetection3d | projects魔改笔记

MMDetection3D支持三种坐标系,包括深度、LiDAR和相机坐标系,分别应用于不同的3D检测场景。Det3DDataSample类包含如提案、实例注解等关键数据。3Dkitti数据集的处理涉及pkl文件生成和info更新。CameraInstance3DBoxes提供了如长宽高、旋转角等信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. MMDetection3d 三大坐标系

目前,在 MMDetection3D 支持的算法中,有三大坐标系,他们是——

  • 深度坐标系(Depth),此坐标系主要被用于通过深度相机采集的数据集, 大多是室内场景点云检测。
  • 激光雷达坐标系(LiDAR),顾名思义,是适用于室外场景点云检测普遍采用的激光雷达设备的坐标系。
  • 相机坐标系(Camera),该坐标系在室内室外场景的点云检测均有使用,代表彩色相机的常用坐标系,一般用于数据格式的转换。在多模态或者单目 3D 的检测器中,相机坐标系是三维点云与二维图像之间的桥梁。
请注意,其实此语境下的坐标系并不只是坐标系本身,它还包括如何定义 包围框的长宽高和旋转角

2. 关于batch_data_samples:批数据采样

batch_data_samples是Det3DDataSample类型的dict,固其中的属性信息均位于/mmdetection3d/mmdet3d/structures/det3d_data_sample.py

class Det3DDataSample(DetDataSample):        

        -`proposal``(InstanceData):在两阶段中使用的区域建议探测器

        -``ignored_instances``(InstanceData):在训练/测试期间要忽略的实例

        -`gt_instances_3d``(InstanceData):3d实例的gt注释

        -`gt_instances``(InstanceData):2D实例的gt注释

        -`pred_instances _3d``(InstanceData):模型的3d实例预测

3. MMDetection中3Dkitti数据集的使用

官方说明文档:

3D 目标检测 KITTI 数据集 — MMDetection3D 1.0.0rc4 文档3D 目标检测 KITTI 数据集 — MMDetection3D 1.0.0rc4 文档

1)先生成pkl文件

先运行tools/create_data.py,生成pkl文件

再运行tools/dataset_converters/update_infos_to_v2.py,更新info 

4. MMDetection3D中CameraInstance3DBoxes说明

kitti datasets label.txt: h、w、l、x、y、z、ry

1. .tensor:x、y、z、l、h、w、ry (其中xyz与kitti一样为底部中心,)

2.  .yaw : 偏航角(对应kitti label中的ry

3. .local_yaw:alpha角

4. .gravity_center:真正的中心点

4.  .bottom_center:底部中心点,对应.tensor中的xyz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值