翻自 https://arxiv.org/pdf/2308.09421.pdf
MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection
Abstract 摘要
在单目三维检测领域,通常的做法是利用场景几何线索来提高检测器的性能。然而,许多现有作品都明确采用了这些线索,如估计深度图并将其反向投影到三维空间。由于从二维到三维的维度增加,这种显式方法会导致三维表示的稀疏性,从而导致大量信息丢失,尤其是对于远处和被遮挡的物体。为了缓解这一问题,我们提出了 MonoNeRD,这是一种新颖的检测框架,可以推断出密集的三维几何图形和占位情况。具体来说,我们用符号距离函数(SDF)对场景进行建模