目标检测经典模型笔记 | RCNN系列

RCNN系列模型(two-stages、基于区域的)主要包括以下几种,按发布时间排序:
  1. RCNN(2014年):首次将深度学习应用于目标检测,通过选择性搜索Selective Search提出候选区域,然后使用CNN(AlexNet)进行特征提取,最后通过SVM分类。
  2. Fast RCNN(2015年):改进了RCNN,引入了ROI Pooling来提取固定大小的区域特征,实现了更快的训练和更高的精度。
  3. Faster RCNN(2015年末):引入区域提议网络(RPN),使得候选区域的生成也通过深度学习来完成,实现了端到端的训练
  4. Mask RCNN(2017年):在Faster RCNN的基础上添加了一个并行分支,用于生成高精度的实例分割掩码,同时采用了ROI Align技术提高精度。

RCNN系列框架总结:

  1. Feature extraction
  2. Region proposal
  3. Classification
  4. Bounding Box Regression

                         

1. RCNN(2014)

1)内容

R-CNN主要分为四个阶段

  1. 产生候选区域:对于输入的图片,使用Selective Search方法,选择出2000个候选区域(每个区域大小不一)。
  2. 特征提取:使用AlexNet对每一个候选区域提取特征,得到2000*4096维的特征向量。
  3. 候选区域类别判断与NMS:将2000*4096维特征向量送入到21个(20个类别+1个背景)SVM分类器中,需要使用NMS去除冗余的候选框。
  4. 边界框偏移回归:Bounding Box Regression

2)框架:引入CNN到Feature extraction

  1. Region proposal (SS
  2. Feature extraction (CNN-AlexNet)
  3. Classification (SVM
  4. Bounding Box Regression

                      

3)创新

在文章中,作者认为 R-CNN 较之前的算法,能够取得30%的改进是基于以下两点:

  1. 使用了CNN来提取候选区域的特征
  2. 使用迁移学习,因为目标检测领域的数据相比图像分类任务要少很多,所以使用在图像分类上训练好的模型,经过 fine-tune 可以很好的运用在目标检测上。

4)不足

               

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值