基于hector算法的真实机器人建图与自主导航(二)——手持激光雷达建图

hector是基于优化的算法(解最小二乘问题),优缺点:不需要里程计,但对于雷达帧率要求很高40Hz,估计6自由度位姿,可以适应空中或者地面不平坦的情况。初值的选择对结果影响很大,所以要求雷达帧率较高。
此算法主要使用高斯牛顿法对帧间匹配进行优化,并且使用多分辨率的地图,避免求解陷入局部极值。
算法已有成熟带代码包,实现起来十分简单,手持激光雷达即可建图。
此处附上代码下载链接:https://github.com/tu-darmstadt-ros-pkg/hector_slam
或:https://download.csdn.net/download/ustcyr/24576276

本人使用的雷达型号是rplidar A2。
1、安装雷达驱动

sudo apt-get install ros-kinetic-rplidar-ros

2、串口配置设备绑定USB端口号、此步骤可根据需求设置,建议设置,设置完成后,不需要考虑串口号,设备即插即用。
终端输入:

lsusb

会看到如下信息

Bus 002 Device 002: ID 0bda:0411 Realtek Semiconductor Corp. 
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 005: ID 8087:0a2b Intel Corp. 
Bus 001 Device 004: ID 04f3:0c1a Elan Microelectronics Corp. 
Bus 001 Device 003: ID 04f2:b5a3 Chicony Electronics Co., Ltd 
Bus 001 Device 008: ID 067b:2303 Prolific Technology, Inc. PL2303 Serial Port
Bus 001 Device 007: ID 10c4:ea60 Cygnal Integrated Products, Inc. CP210x UART Bridge / myAVR mySmartUSB light
Bus 001 Device 006: ID 0bda:5411 Realtek Semiconductor Corp. 
Bus 001 Device 002: ID 
移动机器人项目组任务安排表 Day 01 上午 1.gmapping参数配置(李超) 2.总体launch文件的编写(钟浩) 3.机器人tf,状态,滤波器launch文件的编写(李博) 4.移动机器人调试(李超,钟浩,李博) 5.完成gmapping(李超,钟浩,李博) 下午 1.move_base参数配置(李超,钟浩) 2.amcl参数配置(李博) 3.调试机器人导航参数(李超,钟浩,李博) 4.在rviz中完成机器人单点导航(李超,钟浩) 5.记录多个导航目标点(李超,钟浩) 6.查阅随机循环导航函数的资料(李博) 7.完成随机循环导航功能节点函数(李超,钟浩,李博) 8.完成随机循环导航功能测试(李超,钟浩,李博) 里程碑事件: 1.完成gmapping 2.调试机器人导航参数 3.完成随机循环导航功能测试 Day 02 上午 1.完成循环导航代码的编写(李超,钟浩,李博) 2.调试循环导航功能(李超,钟浩,李博) 下午 1.完成自主探索代码的编写(李超,钟浩,李博) 2.调试自主探索功能(李超,钟浩,李博) 3.优化自主探索功能代码(李超,钟浩,李博) Day 03 上午 1.完成初始化位姿功能 2.完成里程计清零功能 下午 1.完成可设置循环次数导航功能 2.调试初始化位姿,里程计清零,循环导航功能 Day 04 上午 1.完成单点设定导航插件 下午 1.完善单点设定导航插件 2.调试单点设定导航插件功能 Day 05 上午 1.完成多导航点记录插件 2.完成多点循环导航节点 下午 1.完成多点循环导航插件 2.调试多点循环导航插件功能 Day 06 上午 1.查找关于巡墙算法的解决方案 2.完成rrt_exploration(快速随机搜索树)的下载和demo测试 下午 1.修改rrt_exploration接口 Day 07 上午 1.修改rrt_exploration接口 下午 1.修改rrt_exploration接口 Day 08 上午 1.在仿真机器人上完成快速随机搜索树自主探索功能 2.优化导航UI界面 下午 1.在真实机器人上完成快速随机搜索树自主探索功能 2.优化导航UI界面 Day 09 上午 1.分别完成导航和自主的move_base参数的配置 下午 1.完成rviz中marker标记 Day 10 上午 1.将marker功能添加到真实机器人上,并完成各项参数优化。 下午 1.完成代码整理,说明文档撰写。
### 基于激光SLAM的移动机器人方法及实现 #### 1. 系统架构概述 基于激光SLAM(Simultaneous Localization and Mapping)技术的移动机器人系统主要由硬件设备和软件算法两大部分组成。硬件部分通常包括激光雷达、惯性测量单元(IMU)以及轮式编码器等传感器;而软件则依赖于ROS (Robot Operating System) 平台来集成这些组件并执行复杂的计算任务。 #### 2. 数据采集预处理 为了获得高质量的地,在实际操作前需设置合理的参数以控制机器人的运动速度,议将直线行驶速率设定为不大于0.2 m/s,并且角速度应保持在0.4 rad/s以内[^2]。这有助于减少因快速移动造成的像模糊或特征丢失现象,从而提高精度。 当机器人开始工作时,它会利用安装在其上的360度全方位扫描型LiDAR持续获取周围环境的信息——即一系列离散分布的空间坐标点集合,也就是所谓的“点云”。此同时,IMU负责记录加速度变化情况以便校正可能存在的误差,确保所收集到的数据更加精确可靠[^3]。 ```python import rospy from sensor_msgs.msg import LaserScan def laser_callback(msg): # 处理来自LaserScan的消息 pass if __name__ == '__main__': rospy.init_node('laser_subscriber') sub = rospy.Subscriber('/scan', LaserScan, laser_callback) rospy.spin() ``` #### 3. 后端优化生成 经过上述步骤得到原始观测数据之后,还需要进一步对其进行加工处理才能最终形成完整的维栅格状电子地。具体来说就是采用诸如GMapping 或者 Hector SLAM之类的开源库来进行全局最优解搜索,通过迭代更新当前估计的位置状态直至收敛至稳定值为止。期间涉及到的关键环节有: - **位姿**:根据相邻时刻间相对变换关系立节点间的约束条件; - **闭环检测**:识别重复访问过的区域进而消除累积漂移效应的影响; - **形优化求解**:运用非线性最小乘法调整各顶点坐标的偏差量使其满足整体几何一致性原则。 一旦完成了以上流程,则可以借助rviz可视化工具直观展示成果了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值