2 万字详解,彻底讲透 Elasticsearch

本文详细介绍了 Elasticsearch 的核心概念,包括集群、分片、副本和映射,以及其分布式特性。文章指出 Elasticsearch 是基于 Lucene 的实时搜索引擎,通过分片和副本提高数据处理能力和可用性,使用倒排索引实现快速搜索。此外,文中还探讨了写入索引的原理、存储机制和内部优化,强调了近实时搜索的实现。通过对 Elasticsearch 的深入理解,读者能够掌握其在大数据环境下的应用和配置优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于近期在公司内部做了一次 Elasticsearch 的分享,所以本篇主要是做一个总结,希望通过这篇文章能让读者大致了解 Elasticsearch 是做什么的以及它的使用和基本原理。

生活中的数据

搜索引擎是对数据的检索,所以我们先从生活中的数据说起。我们生活中的数据总体分为两种:

  • 结构化数据

  • 非结构化数据

结构化数据: 也称作行数据,是由二维表结构来逻辑表达和实现的数据,严格地遵循数据格式与长度规范,主要通过关系型数据库进行存储和管理。指具有固定格式或有限长度的数据,如数据库,元数据等。

非结构化数据: 又可称为全文数据,不定长或无固定格式,不适于由数据库二维表来表现,包括所有格式的办公文档、XML、HTML、Word 文档,邮件,各类报表、图片和咅频、视频信息等。

说明:如果要更细致的区分的话,XML、HTML 可划分为半结构化数据。因为它们也具有自己特定的标签格式,所以既可以根据需要按结构化数据来处理,也可抽取出纯文本按非结构化数据来处理。

根据两种数据分类,搜索也相应的分为两种:

  • 结构化数据搜索

  • 非结构化数据搜索

对于结构化数据,因为它们具有特定的结构,所以我们一般都是可以通过关系型数据库(MySQL,Oracle 等)的二维表(Table)的方式存储和搜索,也可以建立索引。

对于非结构化数据,也即对全文数据的搜索主要有两种方法:

  • 顺序扫描

  • 全文检索

顺序扫描: 通过文字名称也可了解到它的大概搜索方式,即按照顺序扫描的方式查询特定的关键字。

例如给你一张报纸,让你找到该报纸中“平安”的文字在哪些地方出现过。你肯定需要从头到尾把报纸阅读扫描一遍然后标记出关键字在哪些版块出现过以及它的出现位置。

这种方式无疑是最耗时的最低效的,如果报纸排版字体小,而且版块较多甚至有多份报纸,等你扫描完你的眼睛也差不多了。

全文搜索: 对非结构化数据顺序扫描很慢,我们是否可以进行优化?把我们的非结构化数据想办法弄得有一定结构不就行了吗?

将非结构化数据中的一部分信息提取出来,重新组织,使其变得有一定结构,然后对此有一定结构的数据进行搜索,从而达到搜索相对较快的目的。

这种方式就构成了全文检索的基本思路。这部分从非结构化数据中提取出的然后重新组织的信息,我们称之为索引。

这种方式的主要工作量在前期索引的创建,但是对于后期搜索却是快速高效的。

先说说 Lucene

通过对生活中数据的类型作了一个简短了解之后,我们知道关系型数据库的 SQL 检索是处理不了这种非结构化数据的。

这种非结构化数据的处理需要依赖全文搜索,而目前市场上开放源代码的最好全文检索引擎工具包就属于 Apache 的 Lucene了。

但是 Lucene 只是一个工具包,它不是一个完整的全文检索引擎。Lucene 的目的是为软件开发人员提供一个简单易用的工具包,以方便的在目标系统中实现全文检索的功能,或者是以此为基础建立起完整的全文检索引擎。

目前以 Lucene 为基础建立的开源可用全文搜索引擎主要是 Solr 和 Elasticsearch。

Solr 和 Elasticsearch 都是比较成熟的全文搜索引擎,能完成的功能和性能也基本一样。

但是 ES 本身就具有分布式的特性和易安装使用的特点,而 Solr 的分布式需要借助第三方来实现,例如通过使用 ZooKeeper 来达到分布式协调管理。

不管是 Solr 还是 Elasticsearch 底层都是依赖于 Lucene,而 Lucene 能实现全文搜索主要是因为它实现了倒排索引的查询结构。

如何理解倒排索引呢? 假如现有三份数据文档,文档的内容如下分别是:

  • Java is the best programming language.

  • PHP is the best programming language.

  • Javascript is the best programming language.

为了创建倒排索引,我们通过分词器将每个文档的内容域拆分成单独的词(我们称它为词条或 Term),创建一个包含所有不重复词条的排序列表,然后列出每个词条出现在哪个文档。

结果如下所示:

Term          Doc_1    Doc_2   Doc_3  
-------------------------------------  
Java        |   X   |        |  
is          |   X   |   X    |   X  
the         |   X   |   X    |   X  
best        |   X   |   X    |   X  
programming |   x   |   X    |   X  
language    |   X   |   X    |   X  
PHP         |       |   X    |  
Javascript  |       |        |   X  
-------------------------------------  

这种结构由文档中所有不重复词的列表构成,对于其中每个词都有一个文档列表与之关联。

这种由属性值来确定记录的位置的结构就是倒排索引。带有倒排索引的文件我们称为倒排文件。

我们将上面的内容转换为图的形式来说明倒排索引的结构信息,如下图所示:

其中主要有如下几个核心术语需要理解:

  • 词条(Term): 索引里面最小的存储和查询单元,对于英文来说是一个单词,对于中文来说一般指分词后的一个词。

  • 词典(Term Dictionary): 或字典,是词条 Term 的集合。搜索引擎的通常索引单位是单词,单词词典是由文档集合中出现过的所有单词构成的字符串集合,单词词典内每条索引项记载单词本身的一些信息以及指向“倒排列表”的指针。

  • 倒排表(Post list): 一个文档通常由多个词组成,倒排表记录的是某个词在哪些文档里出现过以及出现的位置。每条记录称为一个倒排项(Posting)。倒排表记录的不单是文档编号,还存储了词频等信息。

  • 倒排文件(Inverted File): 所有单词的倒排列表往往顺序地存储在磁盘的某个文件里,这个文件被称之为倒排文件,倒排文件是存储倒排索引的物理文件。

从上图我们可以了解到倒排索引主要由两个部分组成:

  • 词典

  • 倒排文件

词典和倒排表是 Lucene 中很重要的两种数据结构,是实现快速检索的重要基石。词典和倒排文件是分两部分存储的,词典在内存中而倒排文件存储在磁盘上。

ES 核心概念

一些基础知识的铺垫之后我们正式进入今天的主角 Elasticsearch 的介绍。

ES 是使用 Java 编写的一种开源搜索引擎,它在内部使用 Lucene 做索引与搜索,通过对 Lucene 的封装,隐藏了 Lucene 的复杂性,取而代之的提供一套简单一致的 RESTful API。

然而,Elasticsearch 不仅仅是 Lucene,并且也不仅仅只是一个全文搜索引擎。

它可以被下面这样准确的形容:

  • 一个分布式的实时文档存储,每个字段可以被索引与搜索。

  • 一个分布式实时分析搜索引擎。

  • 能胜任上百个服务节点的扩展,并支持 PB 级别的结构化或者非结构化数据。

官网对 Elasticsearch 的介绍是 Elasticsearch 是一个分布式、可扩展、近实时的搜索与数据分析引擎。

我们通过一些核心概念来看下 Elasticsearch 是如何做到分布式,可扩展和近实时搜索的。

集群(Cluster)

ES 的集群搭建很简单,不需要依赖第三方协调管理组件,自身内部就实现了集群的管理功能。

ES 集群由一个或多个 Elasticsearch 节点组成,每个节点配置相同的 cluster.name 即可加入集群,默认值为 “elasticsearch”。

确保不同的环境中使用不同的集群名称,否则最终会导致节点加入错误的集群。

一个 Elasticsearch 服务启动实例就是一个节点(Node)。节点通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值