AI数据与算法:从采集到应用的全面解析
1. AI数据采集的现状与挑战
在当今数字化时代,数据采集无处不在。似乎每个人的信息都在被无意识地收集,各类组织不加区分地收集、分类和存储着大量数据。据统计,全球每天收集的数据量高达2.5千兆字节,涵盖了各种形式,例如:
- Google每天进行3,607,080次搜索。
- Twitter用户每天发送456,000条推文。
- YouTube用户每天观看4,146,600个视频。
- 收件箱每天接收103,447,529封垃圾邮件。
- 天气频道每天接收18,055,555.56次天气请求。
- GIPHY每天提供694,444个GIF动图。
然而,数据采集本身并不等同于成功。就像《银河系漫游指南》中超级生物建造巨型计算机计算“生命、宇宙和一切”的意义,得到的答案“42”并无实际用处。这表明大量的数据采集若没有明确的问题导向,就无法产生有价值的结果。对于任何组织而言,数据采集的关键在于明确要问的问题以及这些问题的重要性。
以一家城镇商店为例,为了更好地经营,可能需要回答以下问题:
- 每天有多少人从店前走过?
- 这些人中有多少会驻足看橱窗?
- 他们看橱窗的时间有多长?
- 他们在一天中的什么时间看橱窗?
- 某些陈列是否能产生更好的效果?
- 哪些陈列能真正吸引人们进店购物?
创建针对特定业务需求的问题列表至关重要。创建列表后,还需验证每个问题的重要性,并确定回答这些问题所需的信息。但手动收集这些数据是不现实的,因此自动化采集应运而生。不过,自动化采集也存在诸多问题,可能导致数据无用,具体如下: