tensorflow2之模型加载恢复(h5)

本文介绍了如何在TensorFlow2中使用`tf.keras.models.load_model('my_model.h5')`恢复并测试预训练的模型。通过加载'h5'格式的模型权重,创建与原始模型一致的new_model,并进行了预测验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用new_model = tf.keras.models.load_model('my_model.h5')  创建一个与 my_model相同的模型并加载权重测试。

创建 model_hand_h5_load.py

#encoding=utf-8
# 手动创建和加载 *.h5 模型和权重值

from __future__ import absolute_import, division, print_function, unicode_literals

import os

import tensorflow as tf
from tensorflow import keras

print(tf.version.VERSION)

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()

train_labels = train_labels[:1000]
test_labels = test_labels[:1000]

train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0
test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0

# # 定义一个简单的序列模型
# def create_model():
#     model = tf.keras.models.Sequential([
#       keras.layers.Dense(512, activation='relu', input_shape=(784,)),
#       keras.layers.Dropout(0.2),
#       keras.layers.Dense(10, activation='softmax')
#     ]) 
#     return model
  
#   # 创建一个基本的模型实例
# model = create_model()
  
# # 显示模型的结构
#
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值