- 博客(107)
- 资源 (3)
- 收藏
- 关注
原创 作物生长模型Oryza V3实战15:AutoCalibration程序详解
ORYZA模型的AutoCalibration(v2.1).exe程序是一个参数自动校准工具,通过协同优化多个作物参数,提高模型模拟精度。使用时需准备输入文件(crp、exp等)和CALIBRIN.dat配置文件,后者定义需校准的参数范围、误差阈值等设置。程序通过迭代计算寻找最优参数组合,最终生成带X或B后缀的优化结果文件(outcrop/outsoil)。该工具能显著提升ORYZA模型对作物生长过程的模拟能力,为后续产量预测奠定基础。
2025-07-01 16:22:02
23
原创 作物生长模型Oryza V3实战14:SOILHYDRAU程序详解
SOILHYDRAU.EXE是水稻生长模型ORYZAv3的关键子程序,用于模拟土壤水动力学过程。需准备.crp、.rer、.sol等输入文件,并通过hydraulic.txt定义9层土壤参数:包括颗粒组成(粘粒、砂粒)、有机质含量、表层土标识和压实系数。程序基于这些参数自动计算水力特性(如van Genuchten模型参数),生成HYDR_PARAM.TXT输出文件。最终需将结果更新至sol文件第8节的土壤水文参数中,如饱和导水率、含水量等。该程序通过分层参数设置实现精准的水分运动模拟,特别关注表层土特性和
2025-07-01 15:44:11
26
原创 作物生长模型Oryza V3实战13:param程序详解
摘要:PARAM(v2).exe程序用于估算水稻生长模型(ORYZA)的关键参数,包括特定叶面积(SLA)、生物量分配比例(FLV,FST,FSO)及叶片死亡率(DRLV)。程序通过自动校准过程,基于观测数据(生物量、LAI等)计算生长参数,并生成param.out文件。结果显示:1)苗期SLA较高(0.0057m²/kg),利于光捕获;2)成熟期45.6%生物量分配至穗部;3)茎中无储备物质再分配(FSTR=0)。程序提示需验证天气数据准确性(WEATHER.LOG),确保模拟可靠性。该参数化过程为产量预
2025-07-01 15:26:59
37
原创 作物生长模型Oryza V3实战12:drate程序详解
摘要:本文介绍了ORYZA-V3模型中DRATE(v2)工具的使用方法,该工具通过校准水稻四个发育阶段(幼苗期、光周期敏感期、穗部发育期和生殖期)的速率参数(DVRJ、DVRI、DVRP、DVRR)来优化作物生长模拟。操作步骤包括准备输入文件(.crp、.rer、.sol等)、修改参数文件param.in,运行drate.exe后更新crp文件中的发育参数。输出结果包含关键发育阶段的累计温度(GDD)和持续时间等指标,为水稻生长预测提供量化依据。
2025-07-01 15:09:43
32
原创 作物生长模型Oryza V3实战11:输出文件参数详解
摘要:本文介绍了ORYZA-V3作物模型运行过程中产生的各类文件及其作用。结果文件res.dat存储关键变量数据,便于统计分析;model.log记录模型初始化过程,包括控制文件、实验数据、作物参数和土壤数据的读取及临时文件管理;weather.log专门记录气象数据处理问题;op.dat作为核心输出文件,包含辐射、作物生长、气象、水分平衡等模拟结果。文章还分析了日志中多次文件恢复的可能原因并给出排查建议,为模型运行及数据分析提供了实用参考。
2025-07-01 12:02:37
26
原创 作物生长模型Oryza V3实战10:运行文件参数详解
运行文件(.rer)用于批量模拟农业场景,包含多组参数集(Rerunset),每组设定独立的时间范围、灌溉施肥方案等,支持测试不同农艺措施效果。该文件可实现参数自动校准,通过多组参数组合迭代寻找最优值。模拟结果文件(res.dat)会记录全部测试时间段的数据,便于用户对比产量、水分利用率等指标,筛选最优方案或分析气候适应性策略。
2025-07-01 11:50:48
18
原创 作物生长模型Oryza V3实战9:控制文件参数详解
control.dat是ORYZA水稻模型的核心配置文件,主要包含三部分:1)基础参数设置与模拟时间定义;2)关键文件路径配置,包括土壤参数文件(soil.sol)、作物参数文件(cultivar.crp)、田间管理文件(manage.exp)及气象数据目录,同时指定输出结果文件(res.dat)和运行日志(model.log);3)可选参数和输出控制选项。该文件通过关联各类输入数据(气象、土壤、品种特性等)和输出结果,实现模型运行的全流程控制,支持参数调整后继续模拟和中断恢复功能。
2025-07-01 11:46:14
18
原创 作物生长模型Oryza V3实战7:.exp文件参数详解
摘要:试验管理文件ExperimentalFile用于记录田间管理全过程,包含播种、灌溉、施肥等关键操作数据。文件涵盖10个核心模块:基础信息、运行模式、气象数据、水稻种植方式、管理参数、灌溉参数、氮素参数、模型校准数据、温度控制参数及其他附加参数设置。各模块详细记录对应操作的时间、强度等关键指标,为农业试验研究提供系统化数据支持。(135字)
2025-07-01 11:41:27
20
原创 作物生长模型Oryza V3实战6:.crp文件参数详解
作物参数文件(crp)定义了水稻品种的遗传特性和生理参数,主要包括五方面:1)物候调控,控制生长发育进程;2)生长动态,决定生物量积累;3)光合与氮素利用,影响产量形成;4)环境响应,反映逆境适应能力;5)产量构成要素。使用需注意:参数具有品种特异性,需根据种植环境调整,并通过田间数据校准以确保模拟准确性。该文件是水稻生长模型的核心输入参数集。
2025-07-01 11:37:24
18
原创 作物生长模型Oryza V3实战5:.sol文件参数详解
土壤数据文件是模拟土壤水分和养分动态的关键输入文件,当PRODENV设置为"WATERBALANCE"时必须提供。该文件包含土壤水力特性、初始条件和管理参数等关键数据,确保模型能准确模拟水分平衡过程。文件内容涵盖土壤结构、水分动态、养分状况及初始观测数据等多个维度,包括分层厚度、渗流速率、碳氮含量等参数,为稻田土壤的物理、化学和水文特性提供全面定义。缺少该文件将影响模型在水有限条件下的模拟精度。
2025-07-01 11:29:09
13
原创 作物生长模型Oryza V3实战4:气象文件参数详解
气象数据文件以文本或二进制格式存储,提供逐日气象数据用于作物生长模拟。文件按年份命名(如"nstr489360.998"表示1998年),包含365/366行每日数据。"489360"可能是地理编码或站点编号。数据包含地理位置和关键气象要素,直接影响作物光合、呼吸等生理过程计算。
2025-07-01 11:24:13
22
原创 作物生长模型Oryza V3实战3:架构及程序文件介绍
摘要:文章系统介绍了ORYZA水稻生长模拟模型的架构与工作流程。模型包含土壤水分、养分和温度三大基础模块,通过"环境驱动-生理响应-物质分配"的闭环机制模拟作物生长动态。实施流程分为数据转化、输入准备、模型校准、验证和情景模拟五个步骤,涉及气象、作物、土壤等6类输入文件。文中详细说明了各程序文件的功能,包括参数校准工具和数据分析工具,并介绍了5种输出文件类型。该模型框架可定量描述作物生长过程,用于产量预测和农业管理评估。
2025-07-01 11:14:33
17
原创 作物生长模型Oryza V3实战2:下载、安装与使用
摘要:ORYZA 现在的应用范围已从单一水稻作物模拟扩展到多个水稻作物模拟。我在csdn站内也上传了“作物生长模型oryza v3大全(含所有参数模板和4个校准程序1个分析工具)”,可以说是全网最全的吧。网上搜索一般下载的v3只有一个a3主程序,不适合作全面与深入的研究,本版本从国外下载回来,一开始少了一个“SoilHydrau.exe”文件,说是有病毒被隔离了,后经历各种技术手段,并向国际水道研究所发送邮件,才得以补全所有的参数化及校准程序、分析工具,来之不易,有缘人得之。
2025-07-01 10:36:46
25
原创 作物生长模型Oryza V3实战1:为什么要研究它
ORYZAV3是水稻生长模拟模型ORYZA2000的最新升级版本(3.5版),作为作物生长模型,它通过数学方法和计算机技术模拟水稻生长发育过程及其与环境条件的相互作用。主要功能包括:模拟不同条件下的水稻生长和产量形成、评估环境胁迫影响、分析土壤碳氮动态以及进行区域尺度模拟。国内应用广泛,科研机构用于气候变化影响评估、灌溉模式比较等研究,并开展参数敏感性分析和应用培训。使用流程分为六个步骤:确定输入参数(气象、土壤、作物三类)、参数校准、设置模拟环境、运行模型、分析结果(输出50个参数)和计算产量(穗干重×收
2025-07-01 10:00:32
23
原创 数字人接大模型第二步:语音克隆
推荐XTTS-v2项目,由Coqui公司开发的语音生成模型,专为多语言语音克隆和生成设计。它支持17种语言,包括英语、西班牙语、法语、德语、意大利语、葡萄牙语、波兰语、土耳其语、俄罗斯语、荷兰语、捷克语、阿拉伯语、中文、日语、匈牙利语、韩语和印地语。XTTS-v2的核心优势在于其仅需6秒的音频片段即可实现语音克隆,无需大量的训练数据。此外,它还支持情感和风格转移、跨语言语音克隆以及多语言语音生成,采样率高达24kHz。地址:https://github.com/archwesome/XTTS-v2。
2025-04-28 10:01:38
126
原创 数字人接大模型第二步:实时语音同步
接上例第一步,还是dh_live项目,增加了一个完整的实时对话样例,包含vad-asr-llm-tts-数字人全流程,以弥补之前的只有固定的问答的不足。VAD(Voice Activity Detection,语音活动检测)VAD用于检测用户是否正在说话,从而触发后续的语音处理流程。ASR(Automatic Speech Recognition,自动语音识别)负责将用户的语音输入转换为文本LLM(Large Language Model,大语言模型)
2025-04-27 20:38:44
115
原创 数字人接大模型第一步:表情同步
数字人与大模型结合带来了诸多显著的优势,这些优势不仅提升了数字人的性能和用户体验,还为各行业带来了创新和效率的提升。1. 提升交互自然度和智能化水平多模态交互:大模型使得数字人能够同时处理文字、语音、图像等多种模态的信息,从而与用户进行更加自然和丰富的交互。情感识别与表达:通过大模型的情感分析能力,数字人能够识别用户的情感状态,并根据识别结果调整自己的行为和表达方式。2. 个性化定制高效定制:数字人的形象、声音、动作等均可根据需求进行个性化定制,满足不同场景下的应用需求。
2025-04-24 17:09:43
94
原创 mcp 客户端sse远程调用服务端与本地大模型集成实例
按大模型发展来看,mcp应该会成为应用系统的必须,在此之前是function_calling。大模型今后就是一个底座,对用户是隐藏的。而所有的业务系统和领域小模型会通过mcp万象互联。除非要非常精确与高效,且要边缘部署,才会需要对大模型进行微调与蒸馏,否则mcp应该是一种最佳的部署模式。现在诸如langchain之类的的本地知识库外挂方案,其实并没有把数据集微调到大模型中,只是一种变相的mcp方式。如今mcp已成气候,修炼大成。只是国内的大模型支持微调function的极少,还是openai chatGPT
2025-04-22 17:02:46
480
原创 mcp server、client和本地大模型集成调用
MCP(Model Context Protocol,模型上下文协议) 是一种开放标准协议,它像“USB接口”一样,为AI大模型(如GPT、Claude)与外部工具(地图API、数据库等)提供标准化连接方式。通过MCP,AI无需复杂编程即可调用外部资源,实现更复杂的任务处理,例如路线规划、数据分析等。
2025-04-21 16:17:41
517
原创 将DeepSeek-R1蒸馏为轻量级模型实战
模型蒸馏作为一种有效的模型压缩方法,能够将本地训练好的大型复杂模型的知识转移到小型的高效模型,通过让小型“学生”模型学习大型“教师”模型的输出,在保持较高性能的同时,显著减少计算和内存需求。 在DeepSeek - R1中,Transformer架构的核心组件包括多头自注意力层(Multi - Head Self - Attention Layer)和前馈神经网络层(Feed - Forward Neural Network Layer)。多头自注意力层允许模型在不同的表示子空间中并行地关注输
2025-04-18 16:55:00
82
原创 利用AI软件让照片说话
目前市面上各种免费的工具很多,我主要使用以下几款,组合各个环节的输出,最终达到流畅的输出效果。为什么选择即梦,一开始选择腾讯智影,但对上传的图片要求太高,一定要面容整洁,嘴巴还要闭合。我上传了几次都没有检查通过,所以试了一下即梦,好用得出乎我的意料。
2025-04-10 17:04:18
62
原创 调用deepseek大模型时智能嵌入函数
DeepSeek-R1 当前炙手可热,以其强大的自然语言处理和推理能力而广受赞誉。饶是如此,却并不原生支持函数调用(function_call),这是开发过程中不可或缺的一部分。虽有第三方调校的模型支持,然终非官方自带,还需假以时日。本文虽然简短,应该是全网写得最通透的了吧。万事俱备,上代码运行,注意,ollama部署的模型,openai支持的访问地址为:http://localhost:11434/v1。本机8GB vram,只能用qwen2.5:7b了进行测试了。
2025-03-27 17:37:47
199
原创 小样本微调deepseek大模型
用自定义的小样本数据集,训练deepseek r1 8b 4位量化的模型。安装cuda,torch,Unsloth, huggingface,wandb等,见前述章节;微调服务器配置:单机笔记本显卡4060,32GB ram,8GB vram,
2025-03-26 15:40:09
99
原创 对deepseek进行微调
平台上托管了超过 90 万个开源机器学习模型,提供了超过 20 万个数据集,允许用户托管机器学习演示应用程序,支持使用 Gradio 和 Streamlit 等工具构建交互式应用,提供模型推理 API,用户无需下载模型即可直接调用。缺点是资源需求高,开发周期长,技术难度大,如果没有足够的数据或优化经验,模型性能可能不如现有的预训练模型。模型的计算图和权重。3. .pt 和 .pth 格式:PyTorch 的原生格式,.pt 通常保存完整模型(包括结构和参数),而 .pth 更多用于保存模型的状态字典。
2025-03-07 16:54:22
275
原创 deepseek分布式推理多机部署实践
这种情况下,如果有多台8GB的显卡,是可以考虑上32b的。如果报python not found,在环境变量path中检查一下python路径是不是正确,否则要重装一下python,直接如下命令可以显示:python -V。如果添加节点后显示的ip不对,因为某节点有多个ip,可以先在网络配置中禁用其它不用的虚拟网卡,然后删除该节点后重新安装。报没有合适的节点,上图中,调度方式要选择手动,在弹出框中选择识别的2个节点,且显存之和要小于部署的模型要求的显存。1台windows笔记本,4060显卡,8GB显存;
2025-03-05 17:13:14
404
原创 大模型之群魔乱舞
DeepSeek 可以自己本地搭建,不过对GPU要求较高,本地CPU版本或显存8GB以下者只能搭建1.5B、7B、8B,更何况本身就是一个阉割的蒸馏版,对于更完善的14B、32B、70B、670B只能望卡兴叹了。这三个模型的能力都很强,插件效果(代码解释、注释、修复、优化、上下文问答)都表现更好了,大家可以自己比较。DeepSeek-R1-Distill-14B|32B:CPU:12核(14B)至16核(32B),内存:32GB(14B)至64GB(32B),16GB显存(如RTX 4090)
2025-02-21 16:01:54
114
原创 deepseek在地理信息与智慧农业中的应用设计
DeepSeek生成一系列的标注任务,定义标注规则,拉取要标注的图像,通过DynamicMask引擎实现零样本标注,输出标注框和对应的类别标签,最终用于模型训练样本。DS会会生成一系列的任务,去数据层拉取对应的各期哨兵卫星数据,调用对应的领域小模型生成矢量结果,读取大数据平台行政区划信息,最后导出excel统计文件并展示结果;DeepSeek生成一系列的监测任务,拉取三调耕地、承包地矢量图斑,调用领域小模型检测建筑物位目标,进行位置比对,标记违建建筑。同上,平台自动生成2025年油菜分布的矢量图,并展示。
2025-02-21 11:01:05
171
原创 如何将10m分辨率卫星影像超分成2m
其原理就是选择高分辨率和低分辨率的卫星影像数据,例如使用高分1号(2米分辨率)和Sentinel-2(10米分辨率)的影像,在数据预处理时通过线性回归模型调整低分辨率影像的光谱特性,使其与高分辨率影像的光谱响应一致。4、在Qgis中,导出该底图,选择save as...:弹出框中选择前面保存的矢量文件作为导出范围,指定分辨率为0.5m,取消选择create vrt,保存的文件名为要为字母。我因为在海外服务器,所以这里选择的Google影像,效果是一样的。
2025-02-21 10:52:08
165
原创 十、数字人IP应用方案
背景在当今的数字时代,随着AI技术的突飞猛进,数字人AI已经从概念走向应用,成为知识内容创作领域一股不可忽视的力量。它的出现,在很大程度上极大地提高了内容的生产效率,大有替代知识IP,成为内容IP终结者的趋势。数字人IP,从形象到声音,与知识博主真人的相似度可以达到99%。这种方式带来了真人录制无法比拟的优势,可以实现个人知识博主的规模化生产,7天24小时(24/7)不间断工作。2、行业趋势。
2024-09-19 10:57:53
947
原创 十二、部署自已的企业大模型
基于LangChain+ChatGLM3-13B+minio+Paraformer,其中langchain实现本地知识库微调,chatGlm作为大模型基座,minio作为语音存储库,paraformer作为本地文本与语音识别库。
2024-09-04 15:27:07
408
原创 十二、建立自已的北斗卫星实时定位基站
数据处理中心管理各种采样间隔和时段的不同数据存储、存储包含北斗的GNSS原始观测数据、存储网络模型文件、进行数据的质量检查和转换、定期进行整网的解算保障基准框架的稳定、建立数据共享平台;1)基准站子系统,由单个基准站设施(含GNSS 接收机、天线、UPS、防电涌设备、机柜、交换机、数模转换器光纤转换器等)组成,属CORS网络的数据源,GNSS卫星信号的捕获、跟踪、采集、本地存储与实时数据传输;3) 基准站设备的安装,包括天线电缆的铺设、GNSS天线的安装和天线高的量取,GNSS接收的、UPS电源的安装;
2024-09-04 15:05:53
1113
原创 十四、低空安全综合管理服务平台建设方案
1、系统背景由于低空安全研究关系到国家战略安全保障,世界各国相继开展了相关法律法规建设,以及一系列的理论与技术保障研究。为了保障低空空域安全,需推动建立各省级安全管理平台,做好与企业级监控服务平台的管理衔接和数据共享,强化本区域内民用无人机的安全监管工作;加快建设基于民用无人机身份识别和飞行状态的国家级管控平台,建立安全防护体系,强化管控平台自身安全保障能力;加强基于移动通信网络的民用无人机设备进网许可管理;加快民用无人机反制、监测预警技术研究和装备研制,严格控制和规范反制设备使用。2、行业分析。
2024-09-04 14:30:26
2920
1
原创 我的易经代码
后来,生活有些动荡,就没有维护了。后来改成企业版,名为“始皇预测”,用Java Swing编写,支持五大神数,三式,主要应用还是六爻、四柱、风水,其它如称骨、姓名预测等等,历时10年以上,不断改进,真有“闲坐小窗读周易,不觉春去已多时”之感。开发期间,也曾到师父处闭关一年,除得到了师父实战指导外,还蒙师父生活资助,否则,此软件也不可能有今天之完善。冥冥之中,似有天意,每当我想懈怠,想要放弃之时,千里之外就会传来师父他老人家的鞭策之音。当时我师父说,这个软件名字不吉,始皇者,死亡也,是很难推出去的。
2024-08-29 14:12:25
866
1
原创 我的一个典型行业解决方案
看来,是我低估用户了,我说,有个规则,你要注意,就是:日期.姓名.性别.年龄,这4个必须要有,并且要用","分隔,如果没有也要有逗号,逗号必须是半角的,不能用全角。我于是网上一通找,下载回来,把管理员密码搞定了,给她加了一个用户,打包后发给她,让她在家里的电脑上解压后就能用。我说这样吧,你根本不需要花钱买这么一个复杂的软件,你用excel就好,我给你设计一个表格,哪里都能带走,好用又免费。过了几天,她又发给我一个文件,说:麻烦你了,这样排版好看一点,以前的列表长了,手机里不好看得,打印方式还是蛮好。
2024-08-28 16:59:30
840
原创 十三、720度全景照片制作
使用无人机制作室外全景图,能够让我们更加深入地了解和探索大自然的奥秘。无人机可以飞行到我们无法到达的高度和角度,让我们看到更加细致、全面的景象。它可以让我们更加直观、真实地感受到大自然的美丽和壮观,让我们领略到从地面上无法感受到的景象和美妙。能够让我们更加方便地记录和分享我们的旅程和探险。它可以将我们所见所闻所感完美地记录下来,让我们永久保存、随时回顾。同时,我们可以将这些美丽的景象和照片分享给更多的人,让更多的人感受到大自然的美丽和神奇。最重要的是,能够让我们更加深刻地认识到大自然的珍贵和脆弱。
2024-08-23 14:59:48
147
原创 9、双足机器人WBC构建
随着对机器人学研究兴趣的不断增长,机器人已经越来越熟练地执行许多不同的、非同小可的任务,例如跑步、跳跃、爬楼梯和操纵物体。然而,在大多数情况下,这些任务都是单独完成的,这就从根本上限制了机器人在现实世界中的应用。虽然人类偶尔会在单项任务上胜过机器人,但人类在调整和组合行为以解决多项不同任务方面的能力却远胜于机器人。为了解决这些制约因素,提出全身控制(Whole Body Control,简称WBC)。
2024-08-12 18:06:31
827
原创 二四、3d人脸构建
http://www.cbsr.ia.ac.cn/users/xiangyuzhu/projects/3DDFA/Code/3DDFA.zip 可能失效。#安装指南: https://blog.csdn.net/qq_30011277/article/details/102701109。4、安装opencv https://github.com/anhttran/3dmm_cnn?# caffe帮助:http://caffe.berkeleyvision.org/install_yum.html。
2024-07-10 17:57:02
254
原创 8、开发与大模型对话的独立语音设备
系统中,从外部输入电源中获取电源,经过稳压处理,给整个模组供电,ESP32-WROVER主要用来控制整个系统,该设备通过声音传感器实时监听,当声音强度超过阈值后,接收来自MAX9814的语音信号采样值,进行数据处理,得到pcm音频的Base64编码字符串,然后通过ESP32-WROVER自带的wifi模块将pcm音频通过http请求发送至服务器,从响应中获取到ai回复后的音频,再通过MAX98357播放ai回复的音频,从而实现与ai实时语音交互。一款低成本,低功耗,小体积的高性价比离线语音识别模块。
2024-07-08 12:06:10
366
原创 二一、搭建自已的语言大模型
因为安装了其它的conda环境,而USER_SITE与USER_BASE都是共享的,环境被污染了,所以启用用户独立的站点文件目录。2) 添加154行 "chatglm3-6b": "THUDM/chatglm3-6b"# 安装指定版本的pytorch,与conda下安装的2.1.1的高版本没有冲突。也可以使用13B,看自已服务器的gpu配置来,13B要求gpu显存12G以上。1) 第21行修改chatglm2-6b --> chatglm3-13b。按照下列方式初始化自己的知识库和简单的复制配置文件。
2024-07-08 11:42:24
266
1
作物生长模型oryza v3大全(含所有参数模板和4个校准程序1个分析工具)
2025-07-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人